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This chapter describes the terms, models and techniques used to evaluate and predict
product reliability.

1. Introduction

1.

o gk~ WD

~

Why important?

Basic terms and models

Common difficulties

Modeling "physical acceleration”

Common acceleration models

Basic non-repairable lifetime

distributions

Basic modelsfor repairable systems

8. Evauate reliability "bottom-up"

10.

Modeling reliability growth

Bayesian methodology

3. Reliability Data Collection

1.

Planning reliability assessment tests

2. Assumptions/Prerequisites

1.

2.
3.
4.

Choosing appropriate life
distribution

Plotting reliability data
Testing assumptions

Choosing aphysical acceleration
model

M odels and assumptions for
Bayesian methods

4. Reliability Data Analysis

1.

Estimating parameters from

censored data

Fitting an accel eration model

Projecting reliability at use

conditions

Comparing reliability between two

or more popul ations

Fitting system repair rate models

Estimating reliability using a

Bayesian gamma prior

http://www.itl.nist.gov/div898/handbook/apr/apr.htm (1 of 2) [5/1/2006 10:41:21 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/index.htm

8. Assessing Product Reliability

Click here for adetailed table of contents

References for Chapter 8
NIST . .
SEMATECH [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|

http://www.itl.nist.gov/div898/handbook/apr/apr.htm (2 of 2) [5/1/2006 10:41:21 AM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8. Assessing Product Reliability

P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

8. Assessing Product Reliability - Detailed
Table of Contents [8.]

1. Introduction [8.1.]
1. Why isthe assessment and control of product reliability important? [8.1.1.]
1. Quality versusreliability [8.1.1.1.]
2. Competitive driving factors [8.1.1.2.]
3. Safety and health considerations [8.1.1.3.]
2. What are the basic terms and models used for reliability evaluation? [8.1.2.]

1. Repairable systems, non-repairable popul ations and lifetime distribution
models [8.1.2.1]

2. Reliahility or survival function [8.1.2.2.]
3. Failure (or hazard) rate [8.1.2.3.]

4. "Bathtub" curve [8.1.2.4]

5. Repair rate or ROCOF [8.1.2.5]

3. What are some common difficulties with reliability data and how are they
overcome? [8.1.3.]

1. Censoring [8.1.3.1.]
2. Lack of failures [8.1.3.2.]
4. What is"physical acceleration” and how do we model it? [8.1.4.]
5. What are some common acceleration models? [8.1.5.]
1. Arrhenius [8.1.5.1.]
2. Eyring [8.1.5.2]
3. Other models [8.1.5.3]
6. What are the basic lifetime distribution models used for non-repairable
populations? [8.1.6.]

1. Exponential [8.1.6.1]

http://www.itl.nist.gov/div898/handbook/apr/apr_d.htm (1 of 4) [5/1/2006 10:41:13 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

8. Assessing Product Reliability

2. Welbull [8.1.6.2.]
Extreme value distributions [8.1.6.3.]
Lognormal [8.1.6.4.]
Gamma [8.1.6.5.]
Fatigue life (Birnbaum-Saunders) [8.1.6.6.]
7. Proportional hazards model [8.1.6.7.]
7. What are some basic repair rate models used for repairable systems? [8.1.7.]
1. Homogeneous Poisson Process (HPP) [8.1.7.1.]
2. Non-Homogeneous Poisson Process (NHPP) - power law [8.1.7.2.]
3. Exponentia law [8.1.7.3]

8. How can you evaluate reliability from the "bottom-up" (component failure mode to
system failure rate)? [8.1.8.]

Competing risk model [8.1.8.1.]
Seriesmodel [8.1.8.2]
Parallel or redundant model [8.1.8.3.]
R out of N model [8.1.8.4.]
Standby model [8.1.8.5]
6. Complex systems [8.1.8.6.]
9. How can you model reliability growth? [8.1.9.]
1. NHPP power law [8.1.9.1.]
2. Duane plots [8.1.9.2.]
3. NHPP exponential law [8.1.9.3]
10. How can Bayesian methodology be used for reliability evaluation? [8.1.10.]

o o~ W

o > DN e

2. Assumptions/Prerequisites [8.2.]

1. How do you choose an appropriate life distribution model? [8.2.1.]

1. Based on failure mode [8.2.1.1]

2. Extreme value argument [8.2.1.2.]

3. Multiplicative degradation argument [8.2.1.3.]

4. Fatigue life (Birnbaum-Saunders) model [8.2.1.4.]

5. Empirical model fitting - distribution free (Kaplan-Meier) approach [8.2.1.5.]
2. How do you plot reliability data? [8.2.2.]

1. Probability plotting [8.2.2.1.]

2. Hazard and cum hazard plotting [8.2.2.2.]

http://www.itl.nist.gov/div898/handbook/apr/apr_d.htm (2 of 4) [5/1/2006 10:41:13 AM]



8. Assessing Product Reliability

3. Trend and growth plotting (Duane plots) [8.2.2.3]
3. How can you test reliability model assumptions? [8.2.3.]
1. Visual tests [8.2.3.1.]
2. Goodness of fit tests [8.2.3.2.]
3. Likelihood ratio tests [8.2.3.3.]
4. Trend tests [8.2.3.4.]
4. How do you choose an appropriate physical acceleration model? [8.2.4.]

5. What models and assumptions are typically made when Bayesian methods are used
for reliability evaluation? [8.2.5.]

3. Reliahility Data Collection [8.3.]
1. How do you plan areliability assessment test? [8.3.1.]
1. Exponential life distribution (or HPP model) tests [8.3.1.1.]
2. Lognormal or Weibull tests [8.3.1.2.]
3. Reliahility growth (Duane model) [8.3.1.3.]
4. Accelerated lifetests [8.3.1.4.]
5. Bayesian gamma prior model [8.3.1.5.]

4. Reliability Data Analysis [8.4.]
1. How do you estimate life distribution parameters from censored data? [8.4.1.]
1. Graphical estimation [8.4.1.1.]
2. Maximum likelihood estimation [8.4.1.2.]
3. A Weibull maximum likelihood estimation example [8.4.1.3]
2. How do you fit an acceleration model? [8.4.2.]
1. Graphical estimation [8.4.2.1.]
2. Maximum likelihood [8.4.2.2]
3. Fitting models using degradation data instead of failures [8.4.2.3.]
3. How do you project reliability at use conditions? [8.4.3.]
4. How do you compare reliability between two or more populations? [8.4.4.]
5. How do you fit system repair rate models? [8.4.5.]
1. Constant repair rate (HPP/exponential) model [8.4.5.1.]
2. Power |law (Duane) model [8.4.5.2]
3. Exponentia law model [8.4.5.3.]
6. How do you estimate reliability using the Bayesian gamma prior model? [8.4.6.]

http://www.itl.nist.gov/div898/handbook/apr/apr_d.htm (3 of 4) [5/1/2006 10:41:13 AM]



8. Assessing Product Reliability

7. References For Chapter 8: Assessing Product Reliability [8.4.7.]

NIST

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]
SEMATECH

http://www.itl.nist.gov/div898/handbook/apr/apr_d.htm (4 of 4) [5/1/2006 10:41:13 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.1. Introduction

P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

8. Assessing Product Reliability

8.1.Introduction

This section introduces the terminology and models that will be used to
describe and quantify product reliability. The terminology, probability
distributions and models used for reliability analysis differ in many
cases from those used in other statistical applications.

Detailed 1. Introduction
contents of

_ 1. Why isthe assessment and control of product reliability
Section 1

Important?
1. Quality versusreliability
2. Competitive driving factors
3. Safety and health considerations

2. What are the basic terms and models used for reliability
evaluation?

1. Repairable systems, non-repairable popul ations and
lifetime distribution models

2. Rdliability or survival function

3. Fallure (or hazard) rate
4. "Bathtub" curve
5. Repair rate or ROCOF

3. What are some common difficulties with reliability data
and how are they overcome?

1. Censoring

2. Lack of failures
4. What is"physical acceleration” and how do we mode! it?
5. What are some common accel eration models?

1. Arrhenius

2. Eyring
3. Other models
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6. What are the basic lifetime distribution models used for
non-repail rable popul ations?

1. Exponential

Weibull

Extreme value distributions

L ognormal

Gamma

Fatigue life (Birnbaum-Saunders)
7. Proportional hazards model
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7. What are some basic repair rate models used for repairable
systems?
1. Homogeneous Poisson Process (HPP)

2. Non-Homogeneous Poisson Process (NHPP) with
power law
3. Exponential law

8. How can you evaluate reliability from the "bottom- up"
(component failure mode to system failure rates)?

1. Competing risk model
Series model

Parallel or redundant model
R out of N model

Standby model

6. Complex systems
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9. How can you model reliability growth?

1. NHPP power law
2. Duane plots
3. NHPP exponential law

10. How can Bayesian methodology be used for reliability
evaluation?
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8. Assessing Product Reliability
8.1. Introduction

8.1.1.Why Is the assessment and control of
product reliability important?

We depend In today's technological world nearly everyone depends upon the
on, demand,  continued functioning of awide array of complex machinery and
and expect equipment for their everyday health, safety, mobility and economic
reliable welfare. We expect our cars, computers, electrical appliances, lights,
products televisions, etc. to function whenever we need them - day after day, year
after year. When they fail the results can be catastrophic: injury, loss of
life and/or costly lawsuits can occur. More often, repeated failure leads
to annoyance, inconvenience and a lasting customer dissatisfaction that
can play havoc with the responsible company's marketplace position.
Shipping It takes along time for a company to build up areputation for reliability,
unreliable and only a short time to be branded as "unreliable" after shipping a
products flawed product. Continual assessment of new product reliability and
can destroy ongoing control of the reliability of everything shipped are critical
acompany's  necessitiesin today's competitive business arena.
reputation
NIST : :
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8. Assessing Product Reliability
8.1. Introduction

8.1.1. Why is the assessment and control of product reliability important?

8.1.1.1. Quality versus reliability

Reliabilityis  The everyday usage term "quality of a product” isloosely taken to

"quality mean its inherent degree of excellence. In industry, thisis made more

changing precise by defining quality to be "conformance to requirements at the

over time" start of use". Assuming the product specifications adequately capture
customer requirements, the quality level can now be precisely
measured by the fraction of units shipped that meet specifications.

A motion But how many of these units still meet specifications after aweek of

picture operation? Or after amonth, or at the end of a one year warranty

instead of a period? That iswhere "reliability" comesin. Quality is a snapshot at the

snapshot start of life and reliability is a motion picture of the day-by-day
operation. Time zero defects are manufacturing mistakes that escaped
final test. The additional defects that appear over time are "reliability
defects' or reliability fallout.

Life The quality level might be described by a single fraction defective. To

distributions  describe reliability fallout a probability model that describes the

model fraction fallout over time is needed. Thisis known asthelife

fraction distribution model.

fallout over

time

NIST . .
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.2. Competitive driving factors

Reliability is Accurate prediction and control of reliability plays an important rolein

a major the profitability of a product. Service costs for products within the
economic warranty period or under a service contract are amajor expense and a
factor in significant pricing factor. Proper spare part stocking and support
determininga  personnel hiring and training also depend upon good reliability fallout
product's predictions. On the other hand, missing reliability targets may invoke
success contractual penalties and cost future business.

Companies that can economically design and market products that
meet their customers' reliability expectations have a strong competitive
advantage in today's marketpl ace.
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.3. Safety and health considerations

Some failures Sometimes equipment failure can have a major impact on human

have serious safety and/or health. Automobiles, planes, life support equipment,

social and power generating plants are afew examples.

gﬁgﬁg?%ﬁd From the point of view of "assessing product reliability”, we treat

be taken into these kinds of catastrophic failures no differently from the failure
that occurs when akey parameter measured on a manufacturing tool

account when . . e :

planning drifts dlightly out of specification, calling for an unscheduled

reliability mai ntenance action.

studies It is up to the reliability engineer (and the relevant customer) to

define what constitutes afailurein any reliability study. More
resource (test time and test units) should be planned for when an
incorrect reliability assessment could negatively impact safety and/or
health.
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8. Assessing Product Reliability
8.1. Introduction

8.1.2.What are the basic terms and models
used for reliability evaluation?

Reliability Reliability theory developed apart from the mainstream of probability
methodsand  and statistics, and was used primarily as atool to help nineteenth
terminology  century maritime and life insurance companies compute profitable rates
began with to charge their customers. Even today, the terms "failure rate" and

19th century  "hazard rate" are often used interchangeably.

Insurance . . . :
companies The following sections will define some of the concepts, terms, and
models we need to describe, estimate and predict reliability.
NIST
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8.1. Introduction

8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.1.Repairable systems, non-repairable

Life
distribution
models
describe how
non-repairable
populations
fail over time

Any
continuous
PDF defined
only for
non-negative
values can be
alifetime
distribution
model

populations and lifetime distribution models

A repairable system is one which can be restored to satisfactory operation by any action,
including parts replacements or changes to adjustabl e settings. When discussing the rate
at which failures occur during system operation time (and are then repaired) we will
define aRate Of Occurrence Of Failure (ROCF) or "repair rate". It would be incorrect to
talk about failure rates or hazard rates for repairable systems, as these terms apply only
to the first failure times for a population of non repairable components.

A non-repairable population is one for which individual items that fail are removed
permanently from the population. While the system may be repaired by replacing failed
units from either asimilar or a different population, the members of the original
population dwindle over time until all have eventually failed.

We begin with models and definitions for non-repairable populations. Repair rates for
repairable populations will be defined in alater section.

The theoretical population models used to describe unit lifetimes are known as Lifetime
Distribution Models. The population is generally considered to be all of the possible
unit lifetimes for all of the units that could be manufactured based on a particular design
and choice of materials and manufacturing process. A random sample of size n from this
population is the collection of failure times observed for arandomly selected group of n
units.

A lifetime distribution model can be any probability density function (or PDF) f(t)
defined over the range of time from t = 0 to t = infinity. The corresponding cumulative
distribution function (or CDF) F(t) isavery useful function, asit gives the probability
that arandomly selected unit will fail by time t. The figure below shows the relationship
between f(t) and F(t) and gives three descriptions of F(t).
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flﬂT Area = F (1)

flt)=height of curve

J b
1. F(t) =thearea under the PDF f(t) to the left of t.

2. F(t) = the probability that a single randomly chosen new
unit will fail by timet.

3. F(t) =the proportion of the entire population that fails

by timet.
The figure above al so shows a shaded area under f(t) between the two times t; and t,.
Thisareais[F(t,) - F(t;)] and represents the proportion of the population that fails
between times t; and t, (or the probability that abrand new randomly chosen unit will
survive to timet, but fail before timet,).

Note that the PDF f(t) has only non-negative values and eventually either becomes 0 ast
increases, or decreases towards 0. The CDF F(t) is monotonically increasing and goes
from O to 1 ast approaches infinity. In other words, the total area under the curveis

aways 1.
The Weibull The 2-parameter Weibull distribution is an example of a popular F(t). It has the CDF and
model isa PDF equations given by:
good example
of alife P
distribution

&) Bl
N . L
Flf)=1-g "2 ,f(ﬁ}=§[1 g 2

wherey isthe "shape" parameter and a is a scale parameter called the characteristic
life.

Example: A company produces automotive fuel pumps that fail according to a Weibull
life distribution model with shape parameter y = 1.5 and scale parameter 8,000 (time
measured in use hours). If atypical pump is used 800 hours ayear, what proportion are
likely to fail within 5 years?
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Dataplot Solution: The Dataplot commands for the Weibull are:
Weibull CDF ]
commands SET MINMAX =1

LET Y = WEICDF(((800*5)/8000),1.5)

and Dataplot computes Y to be .298 or about 30% of the pumps will fail in thefirst 5
years.

NIST

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]
SEMATECH

http://www.itl.nist.gov/div898/handbook/apr/sectionl/apr121.htm (3 of 3) [5/1/2006 10:41:23 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.1.2.2. Reliability or survival function

P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.2.Reliability or survival function

Survival isthe The Reliability FunctionR(t), also known as the Survival Function
complementary  (t), isdefined by:
event to failure . . : :
R(t) = t) = the probability a unit survives beyond timet.
Since a unit either fails, or survives, and one of these two mutually
exclusive aternatives must occur, we have

R(t) = 1-F(t), F(t)=1-R(®)

Calculations using R(t) often occur when building up from single
components to subsystems with many components. For example, if
one microprocessor comes from a population with reliability
function R(t) and two of them are used for the CPU in a system,

then the system CPU has areliability function given by
Repu(®) = R(t)

Thereliability since both must survive in order for the system to survive. This
of thesystemis  building up to the system from the individual components will be
the product of discussed in detail when we look at the "Bottom-Up" method. The

the reliability general ruleis: to calculate the reliability of a system of independent

functionsof the  components, multiply the reliability functions of all the components
components together.
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8. Assessing Product Reliability

8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.3.Failure (or hazard) rate

The Thefailure rate is defined for non repairable populations as the

failure (instantaneous) rate of failure for the survivorsto timet during the next
rateisthe  instant of time. It isarate per unit of time similar in meaning to reading a
rate at car speedometer at a particular instant and seeing 45 mph. The next instant
whichthe  thefailure rate may change and the units that have already failed play no
population  further role since only the survivors count.

survivors : .

at any Thefailure rate (or hazard rate) is denoted by h(t) and calculated from
given

instant are (£ = S = J) = the instantaneous (conditional) failure rate.
"falling 1=Fig)  Rif

over the . . . | . ) Y

aliff" Thefailure rate is sometimes called a "conditional failure rate" since the

denominator 1 - F(t) (i.e., the population survivors) converts the expression
into a conditional rate, given survival past timet.

Since h(t) is also equal to the negative of the derivative of In{ R(t)}, we
have the useful identity:

f

Fity=1—exp —J.h(r)cfr
0

If we let

i

Hit) = J.E-z(:f).:fz

1]

be the Cumulative Hazard Function, we then have F(t) = 1 - eH®, Two
other useful identities that follow from these formulas are:
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h(i.) - _ Eflﬂ;f{.fjl

H{)=-1nR()

It is also sometimes useful to define an average failure rate over any
interval (T, T,) that "averages' the failure rate over that interval. Thisrate,

denoted by AFR(T4,T5,), isasingle number that can be used as a
specification or target for the population failure rate over that interval. If T,

Is O, it isdropped from the expression. Thus, for example, AFR(40,000)
would be the average failure rate for the population over the first 40,000
hours of operation.

Theformulasfor calculating AFR's are:

ol

B8t
AFR(T, - T) = -2 _H(T)-H(@) _In R~ 1n R(T)
L-T, T-T, T,-T
AFR(0,T) = AFR(T) = 21 _ “la &7
T T
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8. Assessing Product Reliability

8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.4."Bathtub" curve

A plot of
the
failure
rate
over
time for
most
products
yieldsa
curve
that
looks
likea
drawing
of a
bathtub

If enough units from a given population are observed operating and failing over time, it is
relatively easy to compute week-by-week (or month-by-month) estimates of the failure rate
h(t). For example, if Ny, units surviveto start the 13th month of life and r 5 of them fail
during the next month (or 720 hours) of life, then a simple empirical estimate of h(t) averaged
across the 13th month of life (or between 8640 hours and 9360 hours of age), isgiven by (r13
I Nio * 720). Similar estimates are discussed in detail in the section on Empirical Model

Fitting.

Over many years, and across a wide variety of mechanical and el ectronic components and
systems, people have calculated empirical population failure rates as units age over time and
repeatedly obtained a graph such as shown below. Because of the shape of thisfailure rate
curve, it has become widely known as the "Bathtub” curve.

Theinitial region that begins at time zero when a customer first begins to use the product is
characterized by a high but rapidly decreasing failure rate. Thisregion is known asthe Early
Failure Period (also referred to as I nfant Mortality Period, from the actuarial origins of the
first bathtub curve plots). This decreasing failure rate typically lasts several weeksto afew
months.

Next, the failure rate levels off and remains roughly constant for (hopefully) the majority of
the useful life of the product. Thislong period of alevel failure rate is known asthe Intrinsic
Failure Period (also called the Stable Failure Period) and the constant failure rate level is
called the Intrinsic Failure Rate. Note that most systems spend most of their lifetimes
operating in this flat portion of the bathtub curve

Finally, if units from the population remain in use long enough, the failure rate beginsto
increase as materials wear out and degradation failures occur at an ever increasing rate. This
isthe Wearout Failure Period.
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The Bathiub Curve

&
1

Early Intrinsic Wearout

Failure Failure Failure

Period Period Period

'.‘-- ___-_-_._-__,..-"'-
e

0 Time

NOTE: The Bathtub Curve aso applies (based on much empirical evidence) to Repairable
Systems. In this case, the vertical axisisthe Repair Rate or the Rate of Occurrence of

Failures (ROCOF).
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8. Assessing Product Reliability
8.1. Introduction

8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.5.Repair rate or ROCOF

Repair Rate A different approach is used for modeling the rate of occurrence of
models are failure incidences for arepairable system. In this chapter, these rates are
based on called repair rates (not to be confused with the length of time for a
countingthe  repair, which is not discussed in this chapter). Time is measured by
cumulative system power-on-hours from initial turn-on at time zero, to the end of
number of system life. Failures occur at given system ages and the system is
failuresover  repaired to a state that may be the same as new, or better, or worse. The
time frequency of repairs may be increasing, decreasing, or staying at a
roughly constant rate.
Let N(t) be a counting function that keeps track of the cumulative
number of failures agiven system has had from time zero to timet. N(t)
IS a step function that jumps up one every time afailure occurs and stays
at the new level until the next failure.
Every system will have its own observed N(t) function over time. If we
observed the N(t) curves for alarge number of similar systems and
"averaged" these curves, we would have an estimate of M(t) = the
expected number (average number) of cumulative failures by timet for
these systems.
The Repair The derivative of M(t), denoted m(t), is defined to be the Repair Rate or
Rate (or the Rate Of Occurrence Of Failuresat Timet or ROCOF.
ROCOF) is
the mear)1 Models for N(t), M(t) and m(t) will be described in the section on Repair
rate of Rate Models.
failures per
unit time
NIST : :
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8. Assessing Product Reliability
8.1. Introduction

8.1.3.What are some common difficulties
with reliability data and how are they

overcome?

The There are two closely related problems that are typical with reliability

Paradox of data and not common with most other forms of statistical data. These

Reliability are:

Analysis. « Censoring (when the observation period ends, not all units have

The more failed - some are survivors)

reliable a . . , :

oroduct is, « Lack of Failures (if there istoo much censoring, even though a

the harder it large number of units may be under observation, the information

isto get the in the dataiis limited due to the lack of actual failures)

failuredata  These problems cause considerable practical difficulty when planning

needed to reliability assessment tests and analyzing failure data. Some solutions

"prove" itis  arediscussed in the next two sections. Typically, the solutions involve

reliablel making additional assumptions and using complicated models.
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8. Assessing Product Reliability

8.1. Introduction

8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.1.

When not
all units
on test fail
we have
censored
data

Censoring

Consider a situation in which we are reliability testing n (non repairable) units taken
randomly from a population. We are investigating the population to determine if its failure
rate is acceptable. In the typical test scenario, we have afixed time T to run the unitsto see if
they survive or fail. The data obtained are called Censored Type | data.

Censored Typel Data

During the T hours of test we observe r failures (wherer can be any number from O to n). The
(exact) failuretimes arety, t,, ..., t, and there are (n - r) units that survived the entire T-hour

test without failing. Note that T isfixed in advance and r is random, since we don't know how
many failures will occur until the test is run. Note also that we assume the exact times of
failure are recorded when there are failures.

Thistype of censoring is aso called "right censored” data since the times of failure to the
right (i.e., larger than T) are missing.

Another (much less common) way to test is to decide in advance that you want to see exactly
r failure times and then test until they occur. For example, you might put 100 units on test
and decide you want to see at least half of them fail. Then r =50, but T is unknown until the
50th fail occurs. Thisiscalled Censored Typell data.

Censored Typell Data

We observety, t,, ..., t;, wherer is specified in advance. Thetest endsat time T =t;, and (n-r)

units have survived. Again we assume it is possible to observe the exact time of failure for
failed units.

Type |l censoring has the significant advantage that you know in advance how many failure
times your test will yield - this helps enormously when planning adequate tests. However, an
open-ended random test time is generally impractical from a management point of view and
thistype of testing israrely seen.
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Sometimes
we don't
even know
the exact
time of
failure

Many
special
methods
have been
devel oped
to handle
censored
data
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Readout or Interval Data

Sometimes exact times of failure are not known; only an interval of time in which the failure
occurred isrecorded. Thiskind of datais called Readout or | nterval data and the situation is
shown in the figure below:

T, fnl

' r, fail 1, fal 1, fail
n units _

AR
start test | | | |

0 T, T, T, T,

Multicensored Data
In the most general case, every unit observed yields exactly one of the following three types
of information:
« arun-timeif the unit did not fail while under observation
« anexact faluretime
« aninterval of time during which the unit failed.
The units may all have different run-times and/or readout intervals.

How do we handle censored data?

Many statistical methods can be used to fit models and estimate failure rates, even with
censored data. In later sections we will discuss the Kaplan-Meier approach, Probability
Plotting, Hazard Plotting, Graphical Estimation, and Maximum Likelihood Estimation.

Separ ating out Failure M odes

Note that when a data set consists of failure times that can be sorted into several different
failure modes, it is possible (and often necessary) to analyze and model each mode
separately. Consider al failures due to modes other than the one being analyzed as censoring
times, with the censored run-time equal to the time it failed due to the different (independent)
failure mode. Thisis discussed further in the competing risk section and later analysis

sections.

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT!

http://www.itl.nist.gov/div898/handbook/apr/section1/apr131.htm (2 of 2) [5/1/2006 10:41:26 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.1.3.2. Lack of failures

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

8. Assessing Product Reliability

8.1. Introduction

8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.2.Lack of failures

Failure data
Is needed to
accurately
assess and
improve
reliability -
this poses
problems
when testing
highly
reliable
parts

Testing at
much higher
than typical
stresses can
yield
failures but
models are
then needed
to relate
these back
to use stress

When fitting models and estimating failure rates from reliability data,
the precision of the estimates (as measured by the width of the
confidence intervals) tends to vary inversely with the square root of the
number of failures observed - not the number of units on test or the
length of the test. In other words, atest where 5 fail out of atotal of 10
on test gives more information than a test with 1000 units but only 2
failures.

Since the number of failuresr iscritical, and not the sample size n on
test, it becomes increasingly difficult to assess the failure rates of highly
reliable components. Parts like memory chips, that in typical use have
failure rates measured in parts per million per thousand hours, will have
few or no failures when tested for reasonable time periods with
affordable sample sizes. This gives little or no information for
accomplishing the two primary purposes of reliability testing, namely:

« accurately assessing population failure rates

« oObtaining failure mode information to feedback for product
improvement.

How can tests be designed to over come an expected lack of failures?

The answer isto make failures occur by testing at much higher stresses
than the units would normally see in their intended application. This
creates a new problem: how can these failures at higher-than-normal
stresses be related to what would be expected to happen over the course
of many years at normal use stresses? The models that relate high stress
reliability to normal use reliability are called acceleration models.
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8. Assessing Product Reliability
8.1. Introduction

8.1.4.What is "physical acceleration” and
how do we model it?

When Physical Acceleration (sometimes called True Acceleration or just
changing Acceler ation) means that operating a unit at high stress (i.e., higher
stressis temperature or voltage or humidity or duty cycle, etc.) produces the
equivalentto  same failures that would occur at typical-use stresses, except that they
multiplying happen much quicker.

time to fail _ . . : : :
by a F_al I ure may_be d_ue to mechanical fatigue, corrosion, cheml cal reaction,
constant, we diffusion, migration, etc. These are the same causes of failure under
have true normal stress; thetime scale is simply different.

(physical)

acceleration

An When there is true acceleration, changing stressis equivalent to
Acceleration  transforming the time scale used to record when failures occur. The
Factor isthe  transformations commonly used are linear, which means that
constant time-to-fail at high stressjust has to be multiplied by a constant (the
multiplier acceleration factor) to obtain the equivalent time-to-fail at use stress.
between the . :

WO Stress We use the following notation:

levels ts = time-to-fail at stress t, = corresponding time-to-fail at use

F4(t) = CDF at stress
fs(t) = PDF at stress
hy(t) = failure rate at stress

F(t) = CDF at use
fu(t) = PDF at use
h,(t) = failurerate at use

Then, an acceleration factor AF between stress and use means the
following relationships hold:

Linear Acceleration Relationships

Time-to-Fail ty= AF x tg
Failure Probability Fu(t) = F{(VAF)
Reliability R,(t) = R(t/AF)
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Each failure
mode hasits
own
acceleration
factor

Failure data
should be
separated by
failure mode
when
analyzed, if
acceleration
iIsrelevant

Data from
different
stress cells
have the
same slope
on
probability
paper (if
thereis
acceleration)
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8.1.4. What is "physical acceleration" and how do we model it?

fu(t) = (VAF)f(VAF)
hy(t) = (YAF) hy(/AF)

PDF or Density Function
Failure Rate

Note: Acceleration requires that there be a stress dependent physical
process causing change or degradation that leads to failure. In general,
different failure modes will be affected differently by stress and have
different acceleration factors. Therefore, it isunlikely that asingle
acceleration factor will apply to more than one failure mechanism. In
general, different failure modes will be affected differently by stress
and have different acceleration factors. Separate out different types of
failure when analyzing failure data.

Also, a consequence of the linear accel eration relationships shown
above (which follows directly from "true acceleration”) is the
following:

The Shape Parameter for the key life distribution models
(Weibull, Lognormal) does not change for units operating
under different stresses. Plots on probability paper of data
from different stress cells will line up roughly parallel.
These distributions and probability plotting will be discussed in later
sections.
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8. Assessing Product Reliability

8.1. Introduction

8.1.5.What are some common acceleration

models?
Acceleration Acceleration factors show how time-to-fail at a particular operating
models stress level (for one failure mode or mechanism) can be used to predict
predict time the equivalent time to fail at a different operating stress level.
?Srﬁgilo%soaf A model that predicts time-to-fail as afunction of stresswould be even
Stress better than a collection of acceleration factors. If wewrite t; = G(S),
with G(S) denoting the model equation for an arbitrary stresslevel S
then the accel eration factor between two stresslevels S; and S, can be
evaluated simply by AF = G(S;)/G(S;). Now we can test at the higher
stress S,, obtain a sufficient number of failuresto fit life distribution
models and evaluate failure rates, and use the Linear Acceleration
Relationships Table to predict what will occur at the lower use stress
S;.
A model that predicts time-to-fail as afunction of operating stressesis
known as an acceler ation model.
Acceleration Acceleration models are usually based on the physics or chemistry
models are underlying a particular failure mechanism. Successful empirical
oftenderived  models often turn out to be approximations of complicated physics or
from physics kinetics models, when the theory of the failure mechanism is better
or kinetics understood. The following sections will consider avariety of powerful
models and useful models:
related to the « Arrhenius
failure o
mechanism » Eyring
o Other Models
NIST . .
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8. Assessing Product Reliability
8.1. Introduction

8.1.5. What are some common accel eration models?

8.1.5.1. Arrhenius

The One of the earliest and most successful acceleration models predicts

Arrhenius how time-to-fail varies with temperature. This empirically based model

model Is known as the Arrhenius equation. It takes the form

predicts

failure AH

acceleration fr=AeXps—

dueto kT

it(regrgsaeture with T denoting temperature measured in degrees Kelvin (273.16 +
degrees Celsius) at the point when the failure process takes place and k
is Boltzmann's constant (8.617 x 105 in ev/K). The constant Aisa
scaling factor that drops out when cal cul ating acceleration factors, with
A H (pronounced "Delta H") denoting the activation energy, which is
the critical parameter in the model.

The Thevalue of # H depends on the failure mechanism and the materials

Arrhenius involved, and typically ranges from .3 or .4 up to 1.5, or even higher.

activation Acceleration factors between two temperatures increase exponentially

energy, as p, Hincreases.

AH, isall

you need to The acceleration factor between a higher temperature T, and a lower

know to temperature T, is given by

calculate

temperature

acceleration

apm e B[1 1
v |% T

Using the value of k given above, this can be writtenintermsof Tin
degrees Celsius as

AF = exps A x11605 = ! - 1
[TI+273.16) [T;+2?3.16)
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8.1.5.1. Arrhenius
Note that the only unknown parameter in thisformulais s H.

Example: The acceleration factor between 25°C and 125°C is 133 if
AH=.5and17,597if » H=1.0.

The Arrhenius model has been used successfully for failure mechanisms
that depend on chemical reactions, diffusion processes or migration
processes. This covers many of the non mechanical (or non material
fatigue) failure modes that cause electronic equipment failure.
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8.1.5.2. Eyring

The Eyring Henry Eyring's contributions to chemical reaction rate theory have led
model hasa  to avery genera and powerful model for acceleration known as the
theoretical Eyring Model. This model has several key features:

bﬁS' Sin « It hasatheoretical basis from chemistry and quantum mechanics.
gngnll?z:rz/tum « If achemical process (chemical reaction, diffusion, corrosion,
mecr?ani cs migration, etc.) is causing degradation leading to failure, the
and can be Eyring model describes how the rate of degradation varies with
used 1o stress or, equivalently, how time to failure varies with stress.
modd « Themodel includes temperature and can be expanded to include
acceleration other relevant stresses.

when many « Thetemperature term by itself isvery similar to the Arrhenius
stresses are empirical model, explaining why that model has been so
involved successful in establishing the connection between the 4 H

parameter and the quantum theory concept of "activation energy
needed to cross an energy barrier and initiate a reaction”.

The model for temperature and one additional stress takes the general

form:
_ o LT C
te = AT e:{p{—ﬂ, +(B+ TJSI}

for which S; could be some function of voltage or current or any other

relevant stress and the parameters e, /4 H, B, and C determine
accel eration between stress combinations. As with the Arrhenius Model,

k is Boltzmann's constant and temperature isin degrees Kelvin.

If we want to add an additional non-thermal stress term, the model
becomes

RS:; c E
rj':AT E}Ep{ﬁﬁ'(Bﬁ'?JSlﬂ'[Dﬂ'?JSg}
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8.1.5.2. Eyring

Models with
multiple
stresses
generally
have no
Interaction
terms -
which means
you can
multiply
acceleration
factors due
to different
stresses

The Eyring
model can
also be used
to model
rate of
degradation
leading to
fallureasa
function of
stress

In practice,
the Eyring
Model is
usually too
complicated
touseinits
most general
formand
must be
"customized"
or smplified
for any
particular
failure
mechanism

and as many stresses as are relevant can be included by adding similar
terms.

Note that the general Eyring model includes terms that have stress and
temperature interactions (in other words, the effect of changing
temperature varies, depending on the levels of other stresses). Most
models in actual use do not include any interaction terms, so that the
relative change in accel eration factors when only one stress changes
does not depend on the level of the other stresses.

In models with no interaction, you can compute accel eration factors for
each stress and multiply them together. This would not be true if the
physical mechanism required interaction terms - but, at least to first
approximations, it seems to work for most examples in the literature.

Advantages of the Eyring M od€l
« Can handle many stresses.
« Can be used to model degradation data as well as failure data.
o The p H parameter has a physical meaning and has been studied

and estimated for many well known failure mechanisms and
materials.

Disadvantages of the Eyring M odel

« Evenwith just two stresses, there are 5 parameters to estimate.
Each additional stress adds 2 more unknown parameters.

« Many of the parameters may have only a second-order effect. For

example, setting £ = 0 works quite well since the temperature
term then becomes the same as in the Arrhenius model. Also, the
constants C and E are only needed if thereis a significant
temperature interaction effect with respect to the other stresses.

o Theform in which the other stresses appear is not specified by
the general model and may vary according to the particular
failure mechanism. In other words, S; may be voltage or In
(voltage) or some other function of voltage.

Many well-known models are simplified versions of the Eyring model
with appropriate functions of relevant stresses chosen for S; and S,.
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Some of these will be shown in the Other Models section. The trick isto
find the right ssimplification to use for a particular failure mechanism.
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8.1.5.3.Other models

Many useful 1,  This section will discuss several acceleration models whose
2 and 3 stress successful use has been described in the literature.

models are « The (Inverse) Power Rulefor Voltage
simple Eyring _

modds. Sx « The Exponential Voltage Model

are described o Two Temperature/\VVoltage Models

« The Electromigration Model

« Three Stress Models (Temperature, Voltage and Humidity)

« The Coffin-Manson Mechanical Crack Growth Model
The (Inverse) Power Rulefor Voltage

Thismodel, used for capacitors, has only voltage dependency and
takes the form:

Thisisavery simplified Eyring model withez, 4 H, and C al 0, and S

=|nV, and =B,
The Exponential Voltage M odel

In some cases, voltage dependence is modeled better with an
exponential model:

— -BF
If—Ae

Two Temperature/Voltage Models

Temperature/V oltage models are common in the literature and take
one of the two forms given below:
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8.1.5.3. Other models

ﬂ_H
t,= ATV
oy
iy g

Ij. = e g%

Again, these are just simplified two stress Eyring models with the
appropriate choice of constants and functions of voltage.

The Electromigration M odel

Electromigration is a semiconductor failure mechanism where open
failures occur in metal thin film conductors due to the movement of
ions toward the anode. Thisionic movement is accelerated high
temperatures and high current density. The (modified Eyring) model
takes the form

AH

t,= A "ew

with J denoting the current density. & H istypically between .5 and
1.2 electron volts, while an n around 2 is common.

Three-Stress Models (Temperature, Voltage and Humidity)

Humidity plays an important role in many failure mechanisms that
depend on corrosion or ionic movement. A common 3-stress model
takes the form

LE
t,= AeTV - RH~

Here RH is percent relative humidity. Other obvious variations on this
model would be to use an exponential voltage term and/or an
exponential RH term.

Even this simplified Eyring 3-stress model has 4 unknown parameters
and an extensive experimental setup would be required to fit the
model and calculate acceleration factors.
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The
Coffin-Manson
Model isa
useful
non-Eyring
model for
crack growth
or material
fatigue

NIST
SEMATECH

The Coffin-M anson M echanical Crack Growth Model

Models for mechanical failure, material fatigue or material
deformation are not forms of the Eyring model. These models
typicaly have terms relating to cycles of stress or frequency of use or
change in temperatures. A model of this type known as the (modified)
Coffin-Manson model has been used successfully to model crack
growth in solder and other metals due to repeated temperature cycling
as equipment is turned on and off. This model takes the form

N, = Af~AT*G(T.)

with
o N; =the number of cyclesto fail
« f=thecycling frequency
. 4T =the temperature range during acycle

and G(T,5y) 1S an Arrhenius term evaluated at the maximum
temperature reached in each cycle.

Typical valuesfor the cycling frequency exponent ez and the
temperature range exponent ;3 are around -1/3 and 2, respectively
(note that reducing the cycling frequency reduces the number of

cyclesto failure). Thef H activation energy term in G(T ) IS
around 1.25.
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8. Assessing Product Reliability
8.1. Introduction

8.1.6.What are the basic lifetime
distribution models used for
non-repairable populations?

A handful of  There are a handful of parametric models that have successfully served

lifetime as population models for failure times arising from a wide range of

distribution products and failure mechanisms. Sometimes there are probabilistic
modelshave  arguments based on the physics of the failure mode that tend to justify

enjoyed the choice of model. Other times the model is used solely because of its
great empirical success IN fitting actual failure data.
practical " ) i thi .
SUCCESS Seven models will be described in this section:
1. Exponential
2. Welbull
3. Extreme Vaue
4. Lognormal
5. Gamma
6. Birnbaum-Saunders
7. Proportional hazards
NIST
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8.1.6.1.Exponential

o Formulasand Plots
« Uses of the Exponential Distribution M odel
« DATAPLOT and EXCEL Functionsfor the Exponential

All the key Formulas and Plots

formulas

for u; ng The exponential model, with only one unknown parameter, is the simplest of all life
the distribution models. The key equations for the exponential are shown below:
exponential .

model CDF: F(f)=1—¢ ™

RELIABILITY: R(t)=¢ *
.-"E|'

PDF: f(f)= Ae
1

MEAN: —
A
2693
MEDIAN: 12 _ 6
1 A
VARIANCE: —
e

FAILURE RATE: #t)y= A

Note that the failure rate reduces to the constant A for any time. The exponential distribution
isthe only distribution to have a constant failure rate. Also, another name for the exponential

meanistheMean TimeTo Fail or MTTF andwehave MTTF=1/1 .

The Cum Hazard function for the exponential isjust the integral of the failure rate or H(t) =
Ay,

The PDF for the exponential has the familiar shape shown below.
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8.1.6.1. Exponential

The
Exponential
distribution EXAMPLES OF EXPONENTIAL DISTRIBUTION SHAPES
shape
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8.1.6.1. Exponential

Histogram
of
Exponential
Data

The
Exponential
models the
flat portion
of the
"bathtub"
curve -
where most
systems
spend most
of their
"lives

RELATIVE FREQUEMCY
0.2 0.3 0.4 0.5

0.1

1.

Q 200

Below is an example of typical exponentia lifetime data displayed in Histogram form with
corresponding exponential PDF drawn through the histogram.

EXPONENTIAL HISTOGRAM

\

: AN

i |

| | i
400 il

Uses of the Exponential Distribution M odel

Because of its constant failure rate property, the exponential distribution is an excellent
model for thelong flat "intrinsic failure" portion of the Bathtub Curve. Since most
components and systems spend most of their lifetimesin this portion of the Bathtub
Curve, thisjustifies frequent use of the exponential distribution (when early failures or
wear out is not a concern).

Just asit is often useful to approximate a curve by piecewise straight line segments, we
can approximate any failure rate curve by week-by-week or month-by-month constant
rates that are the average of the actual changing rate during the respective time
durations. That way we can approximate any model by piecewise exponential
distribution segments patched together.

Some natural phenomena have a constant failure rate (or occurrence rate) property; for
example, the arrival rate of cosmic ray apha particles or Geiger counter tics. The
exponential model works well for inter arrival times (while the Poisson distribution
describes the total number of eventsin a given period). When these events trigger
failures, the exponential life distribution model will naturally apply.

http://www.itl.nist.gov/div898/handbook/apr/section1/apr161.htm (3 of 5) [5/1/2006 10:41:32 AM]



8.1.6.1. Exponential

Dataplot DATAPLOT and EXCEL Functionsfor the Exponential

and EXCEL _
functions The Dataplot commands EXPPDF and EXPCDF calculate the exponential PDF and CDF for
forthe the standardized case with A = 1. To evaluate the PDF and CDF at 100 hours for an
EXD%()elnentlal exponential with.l = .01, the commands would be
LET A = EXPPDF(100,0,0.01)
LET B = EXPCDF(100,0,0.01)
and the response would be .003679 for the pdf and .63212 for the cdf.
Dataplot can do a probability plot of exponential data, normalized so that a perfect
exponentia fit isadiagonal line with slope 1. The following commands generate 100 random
exponential observations (4 = .01) and generate the probability plot that follows.
LET Y = EXPONENTIAL RANDOM NUMBERSFOR 1 =11 100
LET Y =100*Y
TITLEAUTOMATIC
X1LABEL THEORETICAL (NORMALIZED) VALUE
Y1LABEL DATA VALUE
EXPONENTIAL PROBABILITY PLOTY
Dataplot
Exponenti a| EXPONENTIAL PROBABILITY PLOT ¥
probability
plot =

100

o 1 2 3 4 5

THEOREMCAL (MORMALIZED) VALUE

EXCEL aso has built-in functions for the exponential PDF and CDF. The PDF is given by
EXPONDIST(x, 4. , false) and the CDF is given by EXPONDIST(x, 4 , true). Using 100 for x

and .01 for A will produce the same answers as given by Dataplot.
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8.1.6.2. Weibull

o« Formulasand Plots
o Usesof the Welbull Distribution M odéel
e DATAPLOT and EXCEL Functionsfor the Weibull

Weibull Formulas and Plots

Formulas _ _ e b :
The Weibull isavery flexible life distribution model with two parameters. It has CDF

and PDF and other key formulas given by:

CDF: F(f)=1—g ‘%’

RELIABILITY: &

PEUEY
PDF: fity="| - | g &
|ll '-_\ f.-l" A

w T
; 1

cx )

FAILURE REATE: d
(r \

.

i | -"l
‘] L
o

N, ¢ M

MEAN: al

MEDIAN: ¢ (In 2},

VARIANCE: o“T| 14 \ [.rz] 14 |}

with ¢« the scale parameter (the Characteristic Life), » (gamma) the Shape
Parameter, and | isthe Gamma function with |"(N) = (N-1)! for integer N.

The Cum Hazard function for the Weibull isthe integral of the failure rate or
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8.1.6.2. Weibull

Weibull
data
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A more general 3-parameter form of the Weibull includes an additional waiting time
parameter 1 (sometimes called a shift or location parameter). The formulas for the
3-parameter Weibull are easily obtained from the above formulas by replacing t by (t - L)
wherever t appears. No failure can occur before L hours, so the time scale starts at |1, and
not 0. If a shift parameter L is known (based, perhaps, on the physics of the failure
mode), then all you have to do is subtract 1 from all the observed failure times and/or
readout times and analyze the resulting shifted data with a 2-parameter Weibull.

NOTE: Varioustexts and articlesin the literature use a variety of different symbolsfor
the same Weibull parameters. For example, the characteristic life is sometimes called ¢

(or v =nuor 5 = etd) and the shape parameter isaso caled m(or ;3 = beta). To add to

the confusion, EXCEL calls the characteristic life /i and the shape » and some authors

even parameterize the density function differently, using a scale parameter £ = ¢x*

Special Case: When }* =1, the Weibull reduces to the Exponential Model, with ¢ =1/
A = the mean time to fail (MTTF).

Depending on the value of the shape parameter }, the Welbull model can empirically fit
awide range of data histogram shapes. Thisis shown by the PDF example curves below.
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EXAMPLES OF WEIBULL DISTRIBUTION SHAPES

F
e

FO
=
LY

TIME

From afailure rate model viewpoint, the Weibull is a natural extension of the constant
failure rate exponential model since the Weibull has a polynomial failure rate with

exponent { » - 1}. Thismakes al the failure rate curves shown in the following plot
possible.

Weibull

failurerate
Ig,]ap%l
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ExaMMLES OF WEIBULL FAILURE RATE FUNCTIONS

Shage = 110 Shage =4

E RATE

FAILURE

\ _-|I..L[.-l: : .
\ _____.-"--- .._-l'_'l:.IE i

_.--""'------- Shape=5
TIME
TheWeibull  Uses of the Weibull Distribution Model
ISVvery 1. Because of itsflexible shape and ability to model awide range of failure rates, the
flexible and Weibull has been used successfully in many applications as a purely empirical
also has mode!.
theoretical

o 2. The Weibull model can be derived theoretically as aform of Extreme Value

justification o . . " -

in many Distribution, governing the time to occurrence of the "weakest link™" of many

applications competing failure processes. This may explain why it has been so successful in
applications such as capacitor, ball bearing, relay and material strength failures.

3. Another special case of the Weibull occurs when the shape parameter is 2. The
distribution is called the Rayleigh Distribution and it turns out to be the theoretical
probability model for the magnitude of radial error when the x and y coordinate
errors are independent normals with 0 mean and the same standard deviation.
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Datapl ot
and EXCEL
functions
for the
Weibull

Dataplot
Weibull
Probability
Plot

DATAPLOT and EXCEL Functionsfor the Weibull

The following commands in Dataplot will evaluate the PDF and CDF of a Weibull at
time T, with shape  and characteristic life .

SET MINMAX 1

LET PDF = WEIPDK(T, ¥ ,0, &),

LET CDF = WEICDK(T, ¥ ,0, &)

For example, if T = 1000, ¥ =1.5and & = 5000, the above commands will produce a
PDF of .000123 and a CDF of .08556.

NOTE: Whenever using Dataplot for aWeibull analysis, you must start by setting
MINMAX equal to 1.

To generate Weibull random numbers from a Weibull with shape parameter 1.5 and
characteristic life 5000, use the following commands:

SET MINMAX 1

LET GAMMA =15

LET SAMPLE = WEIBULL RANDOM NUMBERSFOR | =11 100
LET SAMPLE = 5000* SAMPLE

Next, to see how well these "random Weibull data points' are actually fit by a Weibull,
we plot the points on "Weibull" paper to check whether they line up following a straight

line. The commands (following the last commands above) are:
X1LABEL LOG TIME

Y1LABEL CUM PROBABILITY
WEIBULL PLOT SAMPLE

The resulting plot is shown below. Note the log scale used is base 10.
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EXCEL aso has Weibull CDF and PDF built in functions. EXCEL calls the shape

parameter ¢ = alphaand the characteristic life fi = beta. The following command
evaluates the Weibull PDF for time 1000 when the shapeis 1.5 and the characteristic life
1S 5000:

WEIBUL L (1000,1.5,5000,FAL SE)
For the corresponding CDF
WEIBUL L (1000,1.5,5000, TRUE)

The returned values (.000123 and .085559, respectively) are the same as calculated by
Dataplot.
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« Description, Formulas and Plots
e Usesof the Extreme VValue Distribution Model
e DATAPLOT Functionsfor the Extreme Value Distribution

The Extreme  Description, Formulasand Plots
\[;?lstjr?buti on Wehavealready referred to Extreme Value Distributions when describing the uses of the
usually Weibull distribution. Extreme value distributions are the limiting distributions for the
referstothe  mMinimum or the maximum of avery large collection of random observations from the same
distribution arbitrary distribution. Gumbel (1958) showed that for any well-behaved initial distribution
of the (i.e., F(X) is continuous and has an inverse), only afew models are needed, depending on
minimumof  Whether you are interested in the maximum or the minimum, and also if the observations are
alarge bounded above or below.
number of N . . -
In the context of reliability modeling, extreme value distributions for the minimum are
unbounded . ; . . . .
random frequently encour_ltered. For exgmpl e, if asystem consi sts_of nidentical components in series,
observations ar!d .the system fails when the first of Fhese components fails, then system failure times are the
minimum of n random component failure times. Extreme value theory says that, independent
of the choice of component model, the system model will approach a Weibull as n becomes
large. The same reasoning can also be applied at a component level, if the component failure
occurs when the first of many similar competing failure processes reaches a critical level.
The distribution often referred to as the Extreme Value Distribution (Type ) isthe limiting
distribution of the minimum of alarge number of unbounded identically distributed random
variables. The PDF and CDF are given by:
Extreme x—p  FTA
Value 1 8 . A7
Distribution Jlxi=—=e © e , —m<x<m, f=0
formulas i
and PDF
shapes .
T
Fix)=1-e"% | —wex<m f=0

If the x values are bounded below (asis the case with times of failure) then the limiting
distribution is the Weibull. Formulas and uses of the Weibull have aready been discussed.

PDF Shapes for the (minimum) Extreme Value Distribution (Type I) are shown in the
following figure.
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8.1.6.3. Extreme value distributions

POF SHRPES FOR EXNIRE#E WALUE OISHRIEOIION

EEIR - .2
i EEIR - .35
K 5 EEIR - 1
1.3 — Y EEIR - 3
0.3 —
&
0.8 —
0.3 —
o.o ‘/%_M
I ! I ! I ! I ! I ! I ! I ! I ! I
-3 -& -4 -2 1} 2 Ll -] 4
X
The natural Uses of the Extreme Value Distribution M odel
log of 1. In any modeling application for which the variable of interest is the minimum of many
Wei b_U” random factors, all of which can take positive or negative values, try the extreme value
datais distribution as a likely candidate model. For lifetime distribution modeling, since failure
extreme times are bounded below by zero, the Weibull distribution is a better choice.

value data 2. The Weibull distribution and the extreme value distribution have a useful mathematical

relationship. If ty, to, ...,t, are asample of random times of fail from a Weibull
distribution, then Inty, Int,, ...,In t,, are random observations from the extreme value

distribution. In other words, the natural log of a Weibull random time is an extreme
value random observation.

I the Werbull has shape parameter ¥ and characteristic

hfe @, then the extreme value distnbunion (alter taking

natural logarthms )y has g0 — Inee. 75— 1.
Because of this relationship, computer programs and graph papers designed for the
extreme value distribution can be used to analyze Weibull data. The situation exactly

parallels using normal distribution programs to analyze lognormal data, after first taking
natural logarithms of the data points.
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Datapl ot DATAPLOT for the Extreme Value Distribution

commands o :

for the Assume L = In 200,000 = 12.206 and g= 1/2 = .5. The extreme value distribution with these
extreme parameters could be obtained by taking natural logarithms of data from a Weibull population
value

distribution with characteristic life &z = 200,000 and shape 7 =2 Wewill use Dataplot to evaluate PDF's,
CDF's and generate random numbers from this distribution. Note that you must first set
MINMAX to 1 in order to do (minimum) extreme value type | calculations.

SET MINMAX 1
LETBET =5

LET M = LOG(200000)

LET X =DATA 581012128
LET PD = EV1PDF(X, M, BET)
LET CD = EV1CDF(X, M, BET)

Dataplot will calculate PDF and CDF values corresponding to the points 5, 8, 10, 12, 12.8. The
PDF'sare .110E-5, .444E-3, .024, .683 and .247. The CDF's are .551E-6, .222E-3, .012, .484
and .962.

Finally, we generate 100 random numbers from this distribution and construct an extreme
value distribution probability plot as follows:

LET SAM = EXTREME VALUE TYPE 1 RANDOM NUMBERSFOR 1 =11
100

LET SAM = (BET*SAMPLE) + M

EXTREME VALUE TYPE 1 PROBABILITY PLOT SAM

TTRIME. 94T TWFE L PROTANCLITY PLOT LNH

11 =

Data from an extreme value distribution will line up approximately along a straight line when
thiskind of plot is constructed. The slope of the lineis an estimate of ;;, and the "y-axis"
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value on the line corresponding to the "x-axis' 0 point is an estimate of L. For the graph above,
these turn out to be very close to the actual values of ;3 and .
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8.1.6.4. Lognormal
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable popul ations?

8.1.6.4.Lognormal

Formulas and Plots
« Uses of the Lognormal Distribution Model
« DATAPLOT and EXCEL Functionsfor the L ognormal

Lognormal
Formulas and
relationship
to the normal
distribution

Formulas and Plots

The lognormal life distribution, like the Welbull, is avery flexible model that can empirically

fit many types of failure data. The two parameter form has parameters ¥ = the shape
parameter and Tgy = the median (a scale parameter).

Note: If time to failure, t;, has alognormal distribution, then the (natural) logarithm of timeto

failure has anormal distribution with mean p = In Ty and standard deviation © . This makes

lognormal data convenient to work with; just take natural logarithms of all the failure times and
censoring times and analyze the resulting normal data. Later on, convert back to real time and

lognormal parametersusing ¥ as the lognormal shape and Ts, = eM as the (median) scale
parameter.

Below isasummary of the key formulas for the lognormal.
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8.1.6.4. Lognormal

1
Az )perenor
—_—
oTia 2

1 2
T —[—][lﬂr It T5|:| :I _
CDF: F(T) = .[;E 20 it = @[w]
0 i 2T o

PDF: f(f)=

with @ [z) dencting the standard Mormal CDF
RELIABILITY: R(T)=1-F(f)

FATLURE RATE: A(f) = J®
R
4
g
MEAN: Tope 4

MEDIAN: Tsp

VARIANCE: The® [eoj - 1]

Note: A more general 3-parameter form of the lognormal includes an additional waiting time
parameter £/ (sometimes called a shift or location parameter). The formulas for the
3-parameter lognormal are easily obtained from the above formulas by replacing t by (t - )
wherever t appears. No failure can occur before & hours, so the time scale starts at £/ and not 0.
If ashift parameter & isknown (based, perhaps, on the physics of the failure mode), then all

you haveto dois subtract £ from all the observed failure times and/or readout times and
analyze the resulting shifted data with a 2-parameter lognormal.

Examples of lognormal PDF and failure rate plots are shown below. Note that lognormal shapes
for small sigmas are very similar to Weibull shapes when the shape parameter . islarge and

large sigmas give plots similar to small Weibull 's. Both distributions are very flexible and it
is often difficult to choose which to use based on empirical fits to small samples of (possibly
censored) data.

http://www.itl.nist.gov/div898/handbook/apr/section1/aprl164.htm (2 of 5) [5/1/2006 10:41:45 AM]



8.1.6.4. Lognormal

Lognormal EXAMPLES OF LOGNORMAL FAILURE PDF'S
data 'shapes

TIME {In T450 Linits)

Lognormal
failurerate
‘shapes LOGNORMAL FAILURE RATE SHAPE EXAMPLES

Sigma = .2

PDF

TIME  (In TS0 U nits)

http://www.itl.nist.gov/div898/handbook/apr/sectionl/aprl64.htm (3 of 5) [5/1/2006 10:41:45 AM]



8.1.6.4. Lognormal

Avery
flexible model
that also can
apply
(theoretically)
to many
degradation
process
failure modes

Dataplot and
EXCEL
lognormal
functions

Uses of the L ognor mal Distribution Model

1. Asshown in the preceding plots, the lognorma PDF and failure rate shapes are flexible
enough to make the lognormal a very useful empirical model. In addition, the relationship
to the normal (just take natural logarithms of all the data and time points and you have
"normal” data) makes it easy to work with mathematically, with many good software
analysis programs available to treat normal data.

2. Thelognorma model can be theoretically derived under assumptions matching many
failure degradation processes common to el ectronic (semiconductor) failure mechanisms.
Some of these are: corrosion, diffusion, migration, crack growth, electromigration, and,
in general, failures resulting from chemical reactions or processes. That does not mean
that the lognormal is always the correct model for these mechanisms, but it does perhaps
explain why it has been empirically successful in so many of these cases.

A brief sketch of the theoretical arguments leading to alognormal model follows.

Applying the Central Limit Theorem to small additive errorsin thelog
domain and justifying a normal model is equivalent to justifying the
lognormal model in real time when a process moves towards failure based
on the cumulative effect of many small "multiplicative" shocks. More
precisely, if at any instant in time a degradation process undergoes a small
increase in the total amount of degradation that is proportional to the current
total amount of degradation, then it is reasonable to expect the time to failure
(i.e., reaching acritical amount of degradation) to follow alognormal
distribution (Kolmogorov, 1941).

A more detailed description of the multiplicative degradation argument appearsin alater
section.

DATAPLOT and EXCEL Functionsfor the Lognormal

The following commands in Dataplot will evaluate the PDF and CDF of alognormal at time T,
with shape ¢ and median life (scale parameter) Tsg:

LET PDF = LGNPDF(T, Tgg, )
LET CDF = LGNCDF((T, Tsg, 7 )

For example, if T =5000 and = =.5 and Tsy = 20,000, the above commands will produce a
PDF of .34175E-5 and a CDF of .002781 and afailure rate of PDF/(1-CDF) = .3427 %/K.

To generate 100 lognormal random numbers from alognormal with shape .5 and median life
20,000, use the following commands:

LET SAMPLE = LOGNORMAL RANDOM NUMBERSFOR | =11 100

LET SAMPLE = 20,000* (SAMPLE**.5)

Next, to see how well these random lognormal data points are fit by alognormal, we plot them
using the lognormal probability plot command. First we haveto set «# = SD to .5 (see PPCC
PLOT for how to estimate the value of SD from actual data).

LET SSIGMA = .5

X1LABEL EXPECTED (NORMALIZED) VALUES

Y1LABEL TIME
LOGNORMAL PROBABILITY PLOT SAMPLE
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8.1.6.4. Lognormal

The resulting plot is below. Points that line up approximately on a straight line indicates a good
fit to alognormal (with shape SD = .5). The time that corresponds to the (normalized) x-axis
Tsgof 1isthe estimated Ty according to the data. In this caseit is close to 20,000, as expected.

Dataplot
|OgnOI’ma| LOGHORAT PROEAEILIIY PLOX SheSELE
probability
plot
200000
150000
2
= lpoooo —
Jo000 —
1 Q—
| | | | | | | | |
1} 1 2 3 Ll 3 B ?
EXPECIED (WORMARLIZED) WALOES
Finally, we note that EXCEL has a built in function to calculate the lognormal CDF. The
command is =LOGNORMDI ST (5000,9.903487553,0.5) to evaluate the CDF of alognormal at
time T = 5000 with«r =.5and Tgy = 20,000 and In Tgy = 9.903487553. The answer returned is
.002781. Thereis no lognormal PDF function in EXCEL. The normal PDF can be used as
follows:
=(2/5000)* NORMDI ST(8.517193191,9.903487553,0.5,FAL SE)
where 8.517193191 isIn 5000 and "FALSE" is needed to get PDF'sinstead of CDF's. The
answer returned is 3.42E-06.
NIST . :
— 0 TOOLS & AIDS SEARCH BACK NEXT
SEMATECH noMe  [Toot [ '
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8. Assessing Product Reliability
8.1. Introduction
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8.1.6.5.Gamma

« Formulasand Plots
o Usesof the Gamma Distribution M odel
o DATAPLOT and EXCEL Functionsfor the Gamma

Formulas Formulas and Plots

for the . . . .
gamma There are two ways of writing (parameterizing) the gamma distribution that are common in the
mode literature. In addition, different authors use different symbols for the shape and scale parameters.

Below we show three ways of writing the gamma, witha= & = /', the "shape" parameter, and b

5

=1/, the scale parameter. The first choice of parameters (a,b) will be the most convenient for

(e j7) | v, )

later applications of the gamma. EXCEL uses * while Dataplot uses \
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8.1.6.5. Gamma

L Y »
PDF: f(t.a.b)=—1" e " or
['{a)
> T ] -1 f
Sl fy=————1" "¢ " or
T ()

CDF: F(1) = [ f(0)e

[
RELIABILITY: R(ty=1-F{1)
FAILURE RATE: fi(i) = S
R(t)
MEAN: % or aff or ¥
b
VARIANCE: — or a8~ or #3°
h

The . Note: When a = 1, the gamma reduces to an exponential distribution withb= A .
exponential

isaspecial  Another well-known statistical distribution, the Chi-Square, is also a specia case of the gamma.
caseofthe A Chi-Square distribution with n degrees of freedom is the same as agammawith a=n/2 and b =
gamma 5(or ;3 =2).

The following plots give examples of gamma PDF, CDF and failure rate shapes.

Shapes for
Gamma
data
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Gamma
failurerate
shapes

The
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used in

" Sandby"
system
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Bayesian
reliability
analysis

EAAMPLES OF AaMMA FAILURE HATE Z2HAPEDS

AL
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Uses of the Gamma Distribution M odel
1. Thegammaisaflexible life distribution model that may offer a good fit to some sets of

failure data. It is not, however, widely used as alife distribution model for common failure
mechanisms.

. The gamma does arise naturally as the time-to-first fail distribution for a system with

standby exponentially distributed backups. If there are n-1 standby backup units and the
system and all backups have exponential lifetimes with parameter A , then the total lifetime

has agammadistribution witha=nand b =4 . Note: when aiis apositive integer, the
gammais sometimes called an Erlang distribution. The Erlang distribution is used
frequently in queuing theory applications.

. A common use of the gamma model occursin Bayesian reliability applications. When a

system follows an HPP (exponential) model with a constant repair rate A , and it is desired

to make use of prior information about possible values of A , agamma Bayesian prior for

A isaconvenient and popular choice.
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Datapl ot
and
EXCEL
gamma
functions

Dataplot and EXCEL Functionsfor the Gamma
To calculate the PDF, CDF, Reliability and failure rate at time t for agamma with parameters a

andb=1/ p , use the following Dataplot statements:

LET PDF = GAMPDF(t,a,0,b)

LET CDF = GAMCDK(t,a,0,b)

LET REL = 1-CDF

LET FR = PDF/REL
Using an example solved in the section on standby models, if a=2, b= 1/30 and t = 24 months,
the statements are:

LET PDF = GAMPDF(24, 2, 0, 30) response is.01198
LET CDF = GAMCDF(24, 2, 0, 30) responseis.1912
LET REL = 1-CDF response is .8088
LET FR=PDF/REL response is.0148

To generate random gamma data we first have to set the "a" parameter (called "gamma' by
Dataplot). The following commands generate 100 gamma data points chosen randomly from a
gamma distribution with parameters a and b:

LET GAMMA =a
LET DATA = GAMMA RANDOM NUMBERSFOR | = 11100
LET DATA = (Ub)*DATA

For the above example this becomes

LET GAMMA =2
LET DATA = GAMMA RANDOM NUMBERSFOR | =11 100
LET DATA = 30*DATA

Continuing this example, we can now do a gamma probability plot of the 100 pointsin DATA.
The commands are

LET GAMMA =2

X1LABEL EXPECTED (NORMALIZED) VALUES

Y1LABEL TIME
GAMMA PROBABILITY PLOT DATA

The resulting plot is shown below.
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Note that the value of gamma can be estimated using a PPCC plot.

EXCEL also has built-in functions to evaluate the gamma pdf and cdf. The syntax is:

=GAMMADIST(t,8,2/b,FALSE) for the PDF
=GAMMADIST(t,a,1/b,TRUE) for the CDF
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8.1.6.6. Fatigue life (Birnbaum-Saunders)
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairabl e popul ations?

8.1.6.6. Fatigue life (Birnbaum-Saunders)

A model In 1969, Birnbaum and Saunders described a life distribution model that could be derived
based on from a physical fatigue process where crack growth causes failure. Since one of the best ways
cycles of to choose alife distribution model isto derive it from a physical/statistical argument that is
Stf%_S consistent with the failure mechanism, the Birnbaum-Saunders Fatigue Life Distribution is
causng worth considering.
gre%rrz(iitlon « Formulas and Plots for the Birnbaum-Saunders Model
growth o Derivation and Use of the Birnbaum-Saunders Model

o Dataplot Functions for the Birnbaum-Saunders M odel

Formulas and Plotsfor the Birnbaum-Saunders M odel

Formulas
and shapes
for the
Fatigue
Life model
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8.1.6.6. Fatigue life (Birnbaum-Saunders)

The PDF, CDF, mean and variance for the Birnbaum-Saunders Distribution are shown bel ow.

The parametersare: /', ashape parameter; |, a scale parameter. These are the parameters
used in Dataplot, but there are other choices also common in the literature (see the parameters
used for the derivation of the model).

2 2 —14[1+£—2]
1 o= 32 an f
PDF: 7it) = Sl P
[ 2«4'{};?2 ,;’:.EE ] L
v U .ﬁ 1
CDE: F(5) = | - i—\lzn
;?" I;".'.' £

2)
MEAN o] 1+ %

!

2
VARIANCE: 42 # [1 + 5%]

$r 1z the standard normal CDF function

PDF shapes for the model vary from highly skewed and long tailed (small gamma values) to
nearly symmetric and short tailed as gammaincreases. Thisis shown in the figure below.
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Corresponding failure rate curves are shown in the next figure.
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Derivation and Use of the Birnbaum-Saunders M odd!:

Consider amaterial that continually undergoes cycles of stress |oads. During each cycle, a
dominant crack grows towards a critical length that will cause failure. Under repested
application of n cycles of loads, the total extension of the dominant crack can be written as

and we assume the Y; are independent and identically distributed non-negative random

variables with mean p and variance o Suppose failure occurs at the N-th cycle, when W,

first exceeds a constant critical value w. If nislarge, we can use a central limit theorem
argument to conclude that

H ,
Pr(W <m) =1-Pr| 7 <w|=d gl

j71 g 7n

Since there are many cycles, each lasting a very short time, we can replace the discrete
number of cycles N needed to reach failure by the continuous time t; needed to reach failure.

The cdf F(t) of t;is given by
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Here » denotes the standard normal cdf. Writing the model with parameters e and H san

aternative way of writing the Birnbaum-Saunders distribution that is often used  (
G=V. FH as compared to the way the formulas were parameterized earlier in this

section).

Note:

The critical assumption in the derivation, from a physical point of view, isthat the crack
growth during any one cycle is independent of the growth during any other cycle. Also, the
growth has approximately the same random distribution, from cycleto cycle. Thisisavery
different situation from the proportiona degradation argument used to derive alog normal
distribution model, with the rate of degradation at any point in time depending on the total
amount of degradation that has occurred up to that time.

The Birnbaum-Saunders assumption, while physically restrictive, is consistent with a
deterministic model from materials physics known as Miner's Rule (Miner's Rule implies that
the damage that occurs after n cycles, at a stresslevel that produces afatigue life of N cycles,
is proportional to n/N). So, when the physics of failure suggests Miner's Rule applies, the
Birnbaum-Saunders model is a reasonable choice for alife distribution model.

Dataplot Functionsfor the Birnbaum-Saunders Model

The PDF for a Birnbaum-Saunders (Fatigue Life) distribution with parametersy, » is

evaluated at timet by:
LET PDF = FLPDF(t, », 0, J).

The CDFis
LET CDF = FLCDF(t, v, 0, J).

To generate 100 random numbers, when p = 5000, » =2, for example, type the following

Datapl ot commands:

LET GAMMA =2

LET DATA = FATIGUE LIFE RANDOM NUMBERS FOR
=11100

LET DATA =5000*DATA

Finally, we can do a Fatigue Life Probability Plot of the 100 data pointsin DATA by

LET GAMMA =2
FATIGUE LIFE PROBABILITY PLOT DATA

and the points on the resulting plot (shown below) line up roughly on a straight line, as
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8.1.6.6. Fatigue life (Birnbaum-Saunders)
expected for data correctly modeled by the Birnbaum-Saunders distribution.
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130000 —
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Notes
1. Weset GAMMA equal to 2 before doing the probability plot because we knew its
value. If we had real experimental data (with no censoring), first we would run PPCC

to estimate gamma. The command is. FATIGUE LIFE PPCC PLOT DATA. To seethe
estimated value of gamma we would type WRITE SHAPE. Then, we would type LET
GAMMA = SHAPE before running the Fatigue Life Probability Plot.

2. The slope of the line through the points on the probability plot is an estimate of the
scale parameter L.

NIST
SEMATECH

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/apr/section1/apr166.htm (6 of 6) [5/1/2006 10:41:46 AM]


http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.1.6.7. Proportional hazards model
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8.1. Introduction

8.1.6. What are the basic lifetime distribution models used for non-repairable popul ations?

8.1.6.7.Proportional hazards model

The
proportional
hazards
model is often
usedin
survival
analysis
(medical
testing)
studies. It is
not used
much with
engineering
data

The
proportional
hazard model
assumes
changing a
stress
variable (or
explanatory
variable) has
the effect of
multiplying
the hazard
rate by a

The proportional hazards model, proposed by Cox (1972), has been
used primarily in medical testing analysis, to model the effect of
secondary variables on survival. It is more like an acceleration model
than a specific life distribution model, and its strength liesin its ability
to model and test many inferences about survival without making any
specific assumptions about the form of the life distribution model.

This section will give only abrief description of the proportional
hazards model, since it has limited engineering applications.

Proportional Hazards Model Assumption

Letz={Xx Y, ..} beavector of 1 or more explanatory variables
believed to affect lifetime. These variables may be continuous (like
temperature in engineering studies, or dosage level of a particular drug
in medical studies) or they may be indicator variables with the value 1
if agiven factor or condition is present, and O otherwise.

L et the hazard rate for a nominal (or baseline) set z; = (Xg,Yo, ) Of
these variables be given by hy(t), with hq(t) denoting legitimate hazard
function (failure rate) for some unspecified life distribution model.

The proportional hazards model assumes we can write the changed
hazard function for anew value of zas

hA(t) = g(2)ho(t)

In other words, changing z, the explanatory variable vector, resultsin a
new hazard function that is proportional to the nomina hazard
function, and the proportionality constant is afunction of z, g(2),
independent of the time variablet.

A common and useful form for f(z) isthe Log Linear M odel which

has the equation: g(x) = € for one variable, g(x,y) = e®*by for two
variables, etc.
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8.1.6.7. Proportional hazards model

constant. Properties and Applications of the Proportional Hazards M odel

1. The proportional hazards model is equivalent to the acceleration
factor concept if and only if the life distribution model isa
Weibull (which includes the exponential model, as a special

case). For aWeibull with shape parameter 4 , and an
acceleration factor AF between nominal use fail time ty and high

stressfail time tg (with ty = AFty) we have g(s) = AF " . In other
words, hg(t) = AF 7 hy(t).

2. Under alog-linear model assumption for g(z), without any
further assumptions about the life distribution model, it is
possible to analyze experimental data and compute maximum
likelihood estimates and use likelihood ratio tests to determine
which explanatory variables are highly significant. In order to do
thiskind of analysis, however, specia software is needed.

More details on the theory and applications of the proportional hazards
model may be found in Cox and Oakes (1984).
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8. Assessing Product Reliability
8.1. Introduction

8.1.7.What are some basic repair rate
models used for repairable systems?

Models for N(t), M(t) and m(t) were defined in the section on Repair Rates. Repair
repair rates  rate models are defined by first picking afunctional form for M(t), the

of _ expected number of cumulative failures by timet. Taking the derivative
repairable of this gives the repair rate model m(t).
systems

In the next three sections we will describe three models, of increasing
complexity, for M(t). They are: the Homogeneous Poisson Process, the

Non-Homogeneous Poisson Process following a Power law, and the
Non-Homogeneous Poisson Process following an Exponential law.
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8.1.7.1. Homogeneous Poisson Process (HPP)
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.1.Homogeneous Poisson Process
(HPP)

Repair rate : : _ :
(ROCOF) The simplest useful model for M(t) is M(t) = A t and the repair rate (or

models and ROCOF) isthe constant m(t) = A . Thismodel comes about when the
formulas interarrival times between failures are independent and identically

distributed according to the exponential distribution, with parameter':L :

This basic model is also known as a Homogeneous Poisson Process
(HPP). The following formulas apply:

Fify = 1-¢™% = the CDF of the walting timn e to the
next failure {or "interarrival” time

between faillures)

MN(T = the cumulative number of faillures from

time O to time T

-
P{N() =k} = (ﬂ’);

M7= A = the expected number of fatlures by time T
ME) = mif) = A= the repar rate or EOCOF

l] = the Mean Time Between Falures (WMTEE)
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8.1.7.1. Homogeneous Poisson Process (HPP)

HPP model
fitsflat
portion of
"pathtub"
curve

Poisson
relationship
and
Dataplot
and EXCEL
functions
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Despite the ssimplicity of thismodel, it iswidely used for repairable
equipment and systems throughout industry. Justification for this comes,
in part, from the shape of the empirical Bathtub Curve. Most systems (or
complex tools or equipment) spend most of their "lifetimes® operating in
the long flat constant repair rate portion of the Bathtub Curve. The HPP
Isthe only model that applies to that portion of the curve, so it isthe
most popular model for system reliability evaluation and reliability test
planning.

Planning reliability assessment tests (under the HPP assumption) is
covered in alater section, asis estimating the MTBF from system
failure data and cal culating upper and lower confidence limits.

Note that in the HPP model, the probability of having exactly k failures
by time T is given by the Poisson distribution with mean 3 T (see

formulafor P(N(T) = k) above). This can be evaluated by the Dataplot
expression:

LET Y = POIPDF(k, A T)
or by the EXCEL expression:

POISSON(k, A T, FALSE)
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8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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8.1.7.2.Non-Homogeneous Poisson
Process (NHPP) - power law

The repair A flexible model (that has been very successful in many applications)

rate for a for the expected number of failuresin thefirst t hours, M(t), is given by
NHPP the polynomial

following the

Power law V(D) = at”, fora,b =0

The repair rate (or ROCOF) for thismodel is

mi1) = aht”  —at™ . for ¢ > 0. i

The Power
law model is
very flexible  an arbitrary function A (t) for A , we have aNon Homogeneous
and contains
the HPP
(exponential)
model asa
special case  thenwe have an NHPP with a Power Law intensity function (the
"intensity function" is another name for the repair rate m(t)).

The HPP model has a the constant repair rate m(t) = A . If we substitute

Poisson Process (NHPP) with Intensity Function A . If

T
y 4

ALY = mlty — gt !

Because of the polynomial nature of the ROCOF, this model isvery

flexible and can model both increasing (b>1 or 2

O<b<1or0< # <1))failurerates. Whenb=1o0r #* =0, the model

reduces to the HPP constant repair rate model.

< 0) and decreasing
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Probabilities
of failure for
all NHPP
processes
can easily be
calculated
based on the
Poisson
formula

The Power
Law model
isalso called
the Duane
Moddl and
the AMSAA
model

Itisalso
called a
Weibull
Process - but
thisnameis
misleading
and should
be avoided

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law

Probabilities of a given number of failures for the NHPP model are
calculated by a straightforward generalization of the formulas for the
HPP. Thus, for any NHPP

= MO e

PUIT)=F) ="

and for the Power Law model:

a7t | ot S maT
P{N(T}:k):[ g = x

Other names for the Power Law model are: the Duane M odel and the
AMSAA model. AMSAA stands for the United States Army
Materials System Analysis Activity, where much theoretical work
describing the Power Law model was performed in the 1970's.

The timeto thefirst fail for a Power Law process has a Weibull
distribution with shape parameter b and characteristic life a. For this
reason, the Power Law model is sometimes called a Weibull Process.
This name is confusing and should be avoided, however, since it mixes
a life distribution model applicable to the lifetimes of a non-repairable
population with a model for the inter-arrival times of failures of a
repairable population.

For any NHPP process with intensity function m(t), the distribution

function (CDF) for the inter-arrival time 7 to the next failure, given a
failurejust occurred at time T, is given by
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Oncea
failure
occurs, the
waiting time
to the next
failure for
an NHPP
hasa smple
CDF
formula
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| m(T+7)dr
Fr(t)=1-e Y

In particular, for the Power Law the waiting time to the next failure,
given afallure at time T, has distribution function

F.(1)=1 _e—.:;r[{f’ﬂjlb—f’b]
T

Thisinter arrival time CDF can be used to derive a ssimple algorithm for
simulating NHPP Power Law Data.
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8.1.7.3. Exponential law

The An NHPP with ROCOF or intensity function given by

Exponential .

Lawis mit)=e* P

another

flexible Issaid to follow an Exponential Law. Thisis aso called the log-linear

NHPP model model or the Cox-Lewis modd.

A system whose repair rate follows this flexible model isimproving if
/1 <0and deteriorating if ;3 >0. When ;; =0, the Exponential Law

reduces to the HPP constant repair rate model
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8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

8. Assessing Product Reliability
8.1. Introduction

8.1.8.How can you evaluate reliability from
the "bottom-up" (component failure
mode to system failure rate)?

Several This section deals with models and methods that apply to

simple non-repairable components and systems. Models for failure rates (and
models can not repair rates) are described. The next section covers models for

be used to (repairable) system reliability growth.

calculate

system We use the Competing Risk Model to go from component failure

failurerates,  modesto component failure rates. Next we use the Series Model to go

startingwith  from components to assemblies and systems. These models assume
failurerates independence and "first failure mode to reach failure causes both the

for failure - component and the system to fail".

modes within

individual If some components are "in parallel, so that the system can survive one
system (or possibly more) component failures, we have the parallel or

components redundant model. If an assembly has n identical components, at least r

of which must be working for the system to work, we have what is
known asther out of n model.

The standby model uses redundancy like the parallel model, except that

the redundant unit isin an off-state (not exercised) until called upon to
replace afailed unit.

This section describes these various models. The last subsection shows
how complex systems can be evaluated using the various models as

building blocks.
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8.1.8.1. Competing risk model
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8. Assessing Product Reliability
8.1. Introduction

8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system

failure rate)?

8.1.8.1. Competing risk model

Usethe Assume a (replaceable) component or unit has k different waysit can
competing fail. These are called failure modes and underlying each failure modeis
risk model afailure mechanism.
when the : : -

: The Competing Risk M odel evaluates component reliability by
failure e g L .
mechanisms building up" from the reliability models for each failure mode.
are The following 3 assumptions are needed:
independent : : : . .

: 1. Each failure mechanism leading to a particular type of failure
and the first : : )
. (i.e., faillure mode) proceeds independently of every other one, at

mechanism I il afail
failure east until afailure occurs.
causes the 2. The component fails when the first of all the competing failure
component mechanisms reaches a failure state.
to fail 3. Each of the k failure modes has a known life distribution model

Fi(t).
The competing risk model can be used when all three assumptions hold.
If R.(1), Fo(t), and h,(t) denote the reliability, CDF and failure rate for
the component, respectively, and R;(t), F;(t) and h;(t) are the reliability,
CDF and failure rate for the i-th failure mode, respectively, then the
competing risk model formulas are:
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8.1.8.1. Competing risk model

Mqltiply. ko
;ﬁéa:é'ét'% Ro-] [50
failurerates P
F@=1-] [4-&
k :

Think of the competing risk model in the following way:

All the failure mechanisms are having a race to see which
can reach failure first. They are not allowed to "look over
their shoulder or sideways' at the progress the other ones
are making. They just go their own way as fast as they can
and the first to reach "failure" causes the component to
fail.

Under these conditions the component reliability isthe
product of the failure mode reliabilities and the component
failurerateisjust the sum of the failure mode failure rates.

Note that the above holds for any arbitrary life distribution model, as
long as "independence" and "first mechanism failure causes the
component to fail" holds.

When we learn how to plot and analyze reliability datain later sections,
the methods will be applied separately to each failure mode within the
data set (considering failures due to all other modes as " censored run

times"). With this approach, the competing risk model provides the glue
to put the pieces back together again.
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8.1.8.2. Series model
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8.1. Introduction

8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.2.Series model

The series The Series M oddl is used to build up from components to sub-assemblies and systems.
model isused It only appliesto non replaceable populations (or first failures of populations of
to go from systems). The assumptions and formulas for the Series Model are identical to those for
individual the Competing Risk Model, with the k failure modes within a component replaced by the
components n components within a system.
to the entire
system ! The following 3 assumptions are needed:
assuming the 1. Each component operates or failsindependently of every other one, at least until
system fails the first component failure occurs.
when the first 2. The system fails when the first component failure occurs.
component 3. Each of the n (possibly different) components in the system has a known life
fails and all distribution model F; ().
components
fail or
survive
independently
of one
another
Add failure When the Series Model assumptions hold we have:
rates and
multiply L
reliabilities Rgl(f) = R
inthe Series 1=
Model -
Fe(f) =1- —I[{l - )
he(®)= Y By(H)

with the subscript Sreferring to the entire system and the subscript i referring to the i-th
component.

Note that the above holds for any arbitrary component life distribution models, aslong
as "independence” and "first component failure causes the system to fail” both hold.

The analogy to a series circuit is useful. The entire system has n components in series.
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8.1.8.2. Series model

The system fails when current no longer flows and each component operates or fails
independently of all the others. The schematic below shows a system with 5 components
in series "replaced" by an "equivalent” (asfar asreliability is concerned) system with
only one component.

Series System Reduced to Equivalent One Component System

R Ry Ry Ryt) Rsi)
e e e )

}

Rt = R,(t) x R,{t) x R,(t) xR, (1) x Ry(t)
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8.1.8.3. Parallel or redundant model
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8.1.8.3. Parallel or redundant model

Theparallel  The opposite of a series model, for which the first component failure causes the system

model to fall, isaparallel model for which all the components have to fail before the system

assumesall n fails. If there are n components, any (n-1) of them may be considered redundant to the

components remaining one (even if the components are all different). When the system isturned on,

that make up all the components operate until they fail. The system reaches failure at the time of the

a system last component failure.

operate

independently  The assumptions for a paralel model are:

and the 1. All components operate independently of one another, as far asreliability is

systemworks concerned.

?;Sct)ngnaes a 2. The system operates aslong as at |east one component is still operating. System
failure occurs at the time of the last component failure.

component _

still works 3. The CDF for each component is known.

Multiply

component

CDF'sto get

the system

CDF for a

parallel For aparallel model, the CDF F(t) for the system isjust the product of the CDF's F;(t)

model for the components or

rey=1]50
i=l1

R4(t) and hg(t) can be evaluated using basic definitions, once we have F(t).

The schematic below represents a parallel system with 5 components and the (reliability)
equivalent 1 component system with a CDF Fg equal to the product of the 5 component

CDF's.
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8.1.8.3. Parallel or redundant model

Parallel Svstem and Equivalent Single Component

F (t) = F (t) x F5(t) x F;(t) x F () x F4(t)
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8.1.8.4. R out of N model
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8. Assessing Product Reliability
8.1. Introduction

8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system

failure rate)?

8.1.8.4.R out of N model

Anroutofn  An"r out of n" system contains both the series system model and the
model isa parallel system model as special cases. The system has n components
systemthat  that operate or fail independently of one another and aslong as at least r
SUrvives of these components (any r) survive, the system survives. System failure
whenat - occurs when the (n-r+ 1)th component failure occurs.
least r of its
components ~ Whenr =n, ther out of n model reduces to the series model. Whenr =
are working 1, ther out of n model becomes the parallel model.
(anyr) We treat here the ssmple case where all the components are identical.
Formulas and assumptions for r out of n model (identical components):
1. All components have the identical reliability function R(t).
2. All components operate independently of one another (asfar as
failureis concerned).
3. The system can survive any (n-r) of the components failing. The
system fails at the instant of the (n-r+1)th component failure.

Formulafor  qugem reliability is given by adding the probability of exactly r
anroutofn  comnonents surviving to time't to the probability of exactly (r+1)
system components surviving, and so on up to the probability of all components
wherethe  gyrviving to time t. These are binomial probabilities (with p = R(t)), so
COMpoNeNnts e system reliability is given by:
areidentical

Ry=>" [ ]R(ﬁf} - R

Note: If we relax the assumption that al the components are identical,
then R(t) would be the sum of probabilities evaluated for all possible

terms that could be formed by picking at least r survivors and the
corresponding failures. The probability for each term is evaluated as a
product of R(t)'sand F(t)'s. For example, for n=4 and r = 2, the system
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8.1.8.4. R out of N model

reliability would be (abbreviating the notation for R(t) and F(t) by using
only Rand F)

Rs = RiRoF3F4 + RiRsFoF4 + RiR4FoF3 + RoRsF1F4
+ RoR4F1F3 + RgR4F1Fo + RiIRoR3F4 + RiRgR4F»
+ RIRoRyF3 + RyR3RyF1 + RiRR3Ry
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8.1.8.5. Standby model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system

failure rate)?

8.1.8.5.Standby model

TheSandby A standby Model refersto the case in which akey component (or
Model assembly) has an identical backup component in an "off" state until
_eval uates needed. When the original component fails, a switch turns on the

'rgf’gg:’ﬁg/ "standby" backup component and the system continues to operate.

when backup  In the simple case, assume the non-standby part of the system has CDF
replacements  F(t) and there are (n-1) identical backup units that will operate in
areswitched  sequence until the last one fails. At that point, the system finally fails.
on when
failures
occur.

The total system lifetimeisthe sum of nidentically distributed random
lifetimes, each having CDF F(t).

|dentical In other words, T,, = t; + to+ ... + t,,, where each t; has CDF F(t) and T,

backup has a CDF we denote by F,(t). This can be evaluated using convolution

Standoy formulas;
model leads

to

convolution F(t)= J Flu) f(t —u)du
0

formulas

RO = | B f -
1]

where f{t)isthe PDF F'(t)

In general, convolutions are solved numerically. However, for the
special case when F(t) is the exponential model, the above integrations
can be solved in closed form.
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8.1.8.5. Standby model

Exponential
standby
systems lead
to a gamma
lifetime
model

NIST
SEMATECH

Special Case: The Exponential (or Gamma) Standby Model
If F(t) has the exponential CDF (i.e., F(t) = 1 - elt), then
ENy=1-Ate™ —g™*
A= te™, and
/;[r;rz .if'n_l E—;lf
(n— 1)!
and the PDF f(t) is the well-known gamma distribution.

Lt =

Example: An unmanned space probe sent out to explore the solar
system has an onboard computer with reliability characterized by the

exponential distribution withaMean Time To Failure (MTTF) of 1/ A
= 30 months (a constant failure rate of 1/30 = .033 fails per month). The
probability of surviving atwo year missionisonly e24/30 = 45, |f,
however, a second computer isincluded in the probe in a standby mode,
thereliability at 24 months (using the above formulafor F,) becomes .8
X 449 + 449 = 81. Thefailurerate at 24 months (fo/[ 1-F,]) reduces to

[(24/900) x.449]/.81 = .015 fails per month. At 12 months the failure
rate is only .0095 fails per month, which isless than 1/3 of the failure
rate calculated for the non-standby case.

Standby units (as the example shows) are an effective way of increasing
reliability and reducing failure rates, especially during the early stages
of product life. Their improvement effect is similar to, but greater than,
that of parallel redundancy . The drawback, from a practical standpoint,
Is the expense of extra components that are not needed for

functionality.
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8.1.8.6. Complex systems
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.6.Complex systems

Often the
reliability
of complex
systems can
be
evaluated
by
successive
applications
of Series
and/or
Parallel
model

formulas Many complex systems can be diagrammed as combinations of Series components,

Parallel components, R out of N components and Standby components. By using the

formulas for these models, subsystems or sections of the original system can be replaced
by an "equivaent" single component with aknown CDF or Reliability function.
Proceeding like this, it may be possible to eventually reduce the entire system to one
component with a known CDF.

Below is an example of a complex system composed of both componentsin parallel and
componentsin seriesis reduced first to a series system and finally to a one-component
system.
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8.1.8.6. Complex systems

Complex Syvsiem Reduced to Equivalent One Component System

—
Fd-

Fl

Nl

R, = R xRpxR= (1 - F,xF,xF; )(1 - FxF MR, )

Note: The reduction methods described above will work for many, but not all, systems.
Some systems with a complicated operational logic structure will need a more formal
structural analysis methodology. This methodology deals with subjects such as event
trees, Boolean representations, coherent structures, cut sets and decompositions, and is
beyond the present scope of this Handbook.
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8.1.9. How can you model reliability growth?
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8. Assessing Product Reliability
8.1. Introduction

8.1.9.How can you model reliability
growth?

Arédliability During the early stages of developing and prototyping complex
improvement  systems, reliability often does not meet customer requirements. A

testisa formal test procedure aimed at discovering and fixing causes of
formal unreliability isknown as a Reliability Improvement Test. Thistest
procedure focuses on system design, system assembly and component selection
aimed at weaknesses that cause failures.

glnsgta\;ﬁ:gn g A typical reliability improvement test procedure v_vould betoruna
system prototype system, as the customer might for a period of several weeks,

reliability while a multidisciplined team of engineers and technicians (design,

quality, reliability, manufacturing, etc.) analyze every failure that
occurs. Thisteam comes up with root causes for the failures and
develops design and/or assembly improvements to hopefully eliminate
or reduce the future occurrence of that type of failure. Asthe testing
continues, the improvements the team comes up with are incorporated
into the prototype, so it is expected that reliability will improve during
the course of the test.

flaws

Repair rates ~ Another name for reliability improvement testing is TAAF testing,
should show  standing for Test, Analyze And Fix. In the semiconductor industry,

an another common name for areliability test (trademarked by Motorola)
improvement  isan IRONMANT™. The acronym IRONMANT™ stands for "Improve
trendduring  Reliability Of New Machines At Night" and emphasizes the "around the
thecourseof  clock" nature of the testing process.

areliability _ _ _
improvement While only one model applies when arepairable system has no

test and this Improvement or degradation trends (the constant repair rate HPP

can be model), there are infinitely many models that could be used to describe
model ed asystem with a decreasing repair rate (reliability growth models).
using a

NHPP model Fortunately, one or two relatively simple models have been very
successful in awide range of industrial applications. Two models that
have previously been described will be used in this section. These
models are the NHPP Power Law Model and the NHPP Exponential
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8.1.9. How can you model reliability growth?

Law Model. The Power Law Model underlies the frequently used
graphical technique known as Duane Plotting.
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8.1.9.1. NHPP power law
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8. Assessing Product Reliability

8.1. Introduction

8.1.9. How can you model reliability growth?

8.1.9.1.NHPP power law

If the Power
Law applies,
Repair Rates
improve
over time
according to
the formula
at . The

exponent /*
lies between
Oandland
Iscalled the
reliability
growth slope

This repairable system model was described in Section 8.1.7.2. The expected number of

failures by timet has the form M(t) = atb and the repair rate has the form m(t) = abtb-1,
Thiswill model improvement when O < b < 1, with larger improvements coming when b
issmaller. Aswe will seein the next section on Duane Plotting, it is convenient to define

P = 1-band & = ab, and write the repair rate as

m(t) = et ©

Again we have improvement when 0 < <1, with larger improvement coming from

larger valuesof /7. /7 isknown as the Duane Plot slope or the reliability improvement
Growth Sope.

In terms of the original parameters for M(t), we have

&= “ and H=1-—/

1- f3

Use of the Power Law model for reliability growth test data generally assumes the
following:

1. While the test is ongoing, system improvements are introduced that produce continual
improvements in the rate of system repair.

2. Over along enough period of time the effect of these improvements can be modeled

i

adequately by the continuous polynomial repair rate improvement model «:# P

http://www.itl.nist.gov/div898/handbook/apr/section1/apr191.htm (1 of 3) [5/1/2006 10:41:56 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

8.1.9.1. NHPP power law

When an
Improvement
test ends, the
MTBF stays
constant at
its last
achieved
value

Smulated
Data
Example

3. When the improvement test ends at test time T and no further improvement actions are

. . 1 . .
ongoing, the repair rate has been reduced to «#: . Therepair rate remains constant
from then on at this new (improved) level.

Assumption 3 means that when the test ends, the HPP constant repair rate model takes
over and the MTBF for the system from then on is the reciprocal of the final repair rate

o 5
or LT} e |f we estimate the expected number of failures up to time T by the actual
number observed, the estimated MTBF at the end of areliability test (following the
Power Law) is:

ESTIMATED MTEEF AT END OF TEST = ——
11—
with T denoting the test time, r is the total number of test failuresand #* isthe reliability

growth slope. A formulafor estimating 5 from system failuretimesis given in the
Analysis Section for the Power L aw model.

Simulating NHPP Power Law Data

Step 1: User inputs the positive constants a and b.

Step 2: Simulate a vector of n uniform (0,1) random numbers. Call these U4, Uy, Usg, . ...
U

Step 3: Calculate Y, = {-Va* InUq} ** 1/b

Stepi: Calculate Yj = {(Yj. ** b) -Va* InU;}**VUb fori=2,...,n

Then numbersYy, Y, . . ., Y, are the desired repair times simulated from an NHPP Power

Law process with parametersa, b (or /# = 1-band & = ah).

The Dataplot Macro powersim.dp will ask the user to input the number N of repair times
desired and the parameters a and b. The program will output the N simulated repair times
and aplot of these repair times.

Example

Below powersim.dp is used to generate 13 random repair times from the NHPP Power
Law processwitha=.2and b = .4.

CALL powersim.dp

Enter number N of simulated repair times desired
13

Enter value for shape parameter a (a > 0)

2

Enter value for shape parameter b (b > 0)
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8. Assessing Product Reliability

8.1. Introduction

8.1.9. How can you model reliability growth?

8.1.9.2.Duane plots

A plot on
log-log paper
of successive
MTBF
estimates

ver sus system
time of fail for
reliability
improvement
test datais
called a
Duane Plot

Pointson a
Duane plot
lineup
approximately
on a straight
lineif the
Power Law
model applies

Duane plot
reliability
growth slopes
should lie
between .3
and .6

The standard estimate of the MTBF for a system with a constant repair rate (an HPP system) is
T/r, with T denoting the total time the system was observed and r is the total number of failures
that occurred.

If we calculate successive MTBF estimates (called Cum MTBF Estimates), every time afailure
occurs for a system undergoing reliability improvement testing, we typically see a sequence of
mostly increasing numbers.

In 1964, J. T. Duane observed that when he plotted these cum MTBF estimates versus the times
of failure on log-log paper, the points tended to line up following a straight line. This was true for
many different sets of reliability improvement data and many other engineers have seen similar
results over the last three decades. Thistype of plot is called a Duane Plot and the slope ;3 of the

best line through the pointsis called the reliability growth slope or Duane plot slope.

Plotting a Duane Plot issimple. If the ith failure occurs at time t;, then plot t; divided by i (the
"y"- axis value) versus the timet; (the "x"-axis value) on log-log graph paper. Do thisfor al the
test failures and draw the best straight line you can following all these points.

Why does this "work"? Following the notation for repairable system models, we are plotting
estimates of {t/M(t)} versusthetime of failuret. If M(t) follows the Power Law (also described in
the last section), then we are plotting estimates of t/atP versus the time of fail t. Thisis the same

5]
b g
I:-{.:IIL

as plotting (1 versust, with ;3 = 1-b. Onlog-log paper thiswill be astraight line with

sope s andintercept (when't = 1) of - log;ga.

In other words, a straight line on a Duane plot is equivalent to the NHPP Power Law Model with
areliability growth slopeof ;7= 1-bandan"a" parameter equal to

10-intercept

Note: A useful empirical rule of thumb based on Duane plots made from many reliability
improvement tests across many industries is the following:

The reliability improvement slope for virtualy all reliability improvement tests will
be between .3 and .6. The lower end (.3) describes aminimally effective test -
perhaps the cross-functional team is inexperienced or the system has many failure
mechanisms that are not well understood. The higher end (.6) approaches the
empirical state of the art for reliability improvement activities.
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8.1.9.2. Duane plots

Examples of
Duane Plots

Duane Plot Example 1:

A reliability growth test lasted 1500 hours (approximately 10 weeks) and recorded 8 failures at
the following system hours: 33, 76, 145, 347, 555, 811, 1212, 1499. After calculating successive
cum MTBF estimates, a Duane plot shows these estimates versus system age on log vs log paper.
The "best" straight line through the data points corresponds to a NHPP Power Law model with

reliability growth slope ;3 equal to the slope of theline. Thisline is an estimate of the theoretical

model line (assuming the Power Law holds during the course of the test) and the achieved MTBF
at the end of the test is given by

T/Ir (- )]

with T denoting the total test time and r the number of failures. Results for this particular
reliability growth test follow.

Failure# System Age of Failure Cum MTBF
1 33 33
2 76 38
3 145 48.3
4 347 86.8
5 555 111.0
6 811 135.2
7 1212 1731
8 1499 187.3
Miane Flot
1088 TR
g
C 188 ! . ﬁ,_,-f:‘ :
. e
K _ d_,—-'"'-, B
M e
A L
B ___J___d-P'
F 18/
1 18 1488 1A8A 18K

The Duane plot indicates a reasonable fit to a Power Law NHPP model. The reliability
improvement slope (slope of line on Duane plot) is ;3 = .437 (using the formula given in the

section on reliability data analysis for the Power Law model) and the estimated M TBF achieved
by the end of the 1500 hour test is 1500/(8 x [1-.437]) or 333 hours.

Duane Plot Example 2:

For the ssmulated Power Law data used in the Example in the preceding section, the following
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Dataplot commands (executed immediately after running powersim.dp) produce the Duane Plot
shown below.
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8.1.9.3. NHPP exponential law
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8.1.9.3.NHPP exponential law

The When the data points in a Duane plot show obvious curvature, a model

Exponential  that might fit better is the NHPP Exponential Law.
Lawis

another For thismodel, if ;3 <O, the repair rate improves over time according
useful to
reliability
growth "y ax+
model to try )
whenthe  The corresponding cumulative expected failures mode is
Power law is
not fitting LRy — AT — ot
well A = A2
This approaches the maximum value of A expected failuresast goesto
infinity, so the cumulative failures plot should clearly be bending over
and asymptotically approaching avalue SO
Rule of thumb: First try a Duane plot and the Power law model. If that
shows obvious lack of fit, try the Exponential Law model, estimating
parameters using the formulas in the Analysis Section for the
Exponential law. A plot of cum fails versus time, along with the
estimated M(t) curve, can be used to judge goodness of fit.
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8.1.10. How can Bayesian methodology be used for reliability evaluation?
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8.1. Introduction

8.1.10.How can Bayesian methodology be used for

Several
Bayesian
Methods
overview
topicsare
coveredin
this section

Bayesian
analysis
considers
population
parameters
to be
random, not
fixed

Old
information,
or subjective
judgment, is
used to
determine a
prior
distribution
for these
population
parameters

reliability evaluation?

This section gives an overview of the application of Bayesian techniquesin reliability
investigations. The following topics are covered:

o What is Bayesian Methodoloqy ?

« Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors
« How Bayesian Methodology is used in System Reliability Evaluation

« Advantages and Disadvantages of using Bayes Methodol ogy

What is Bayesian M ethodology?

It makes a great deal of practical sense to use al the information available, old and/or new,
objective or subjective, when making decisions under uncertainty. Thisis especialy true
when the consequences of the decisions can have a significant impact, financial or
otherwise. Most of us make everyday personal decisions thisway, using an intuitive process
based on our experience and subjective judgments.

Mainstream statistical analysis, however, seeks objectivity by generally restricting the
information used in an analysis to that obtained from a current set of clearly relevant data.
Prior knowledge is not used except to suggest the choice of a particular population model to
"fit" to the data, and this choiceis later checked against the data for reasonableness.

Lifetime or repair models, as we saw earlier when we looked at repairable and non
repairable reliability population models, have one or more unknown parameters. The

classical statistical approach considers these parameters as fixed but unknown constants to
be estimated (i.e., "guessed at") using sample data taken randomly from the population of
interest. A confidence interval for an unknown parameter isreally afrequency statement
about the likelihood that numbers calculated from a sample capture the true parameter.
Strictly speaking, one cannot make probability statements about the true parameter since it
isfixed, not random.

The Bayesian approach, on the other hand, treats these popul ation model parameters as
random, not fixed, quantities. Before looking at the current data, we use old information, or
even subjective judgments, to construct aprior distribution model for these parameters.
This model expresses our starting assessment about how likely various values of the
unknown parameters are. We then make use of the current data (via Baye's formula) to
revise this starting assessment, deriving what is called the posterior distribution model for
the population model parameters. Parameter estimates, along with confidence intervals
(known as credibility intervals), are calculated directly from the posterior distribution.
Credibility intervals are legitimate probability statements about the unknown parameters,
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since these parameters now are considered random, not fixed.

It isunlikely in most applications that data will ever exist to validate a chosen prior
distribution model. Parametric Bayesian prior models are chosen because of their flexibility
and mathematical convenience. In particular, conjugate priors (defined below) are a natural
and popular choice of Bayesian prior distribution models.

Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors

Bayes formulais a useful equation from probability theory that expresses the conditional
probability of an event A occurring, given that the event B has occurred (written P(A|B)), in
terms of unconditional probabilities and the probability the event B has occurred, given that
A has occurred. In other words, Bayes formula inverts which of the eventsisthe
conditioning event. The formulais

and P(B) in the denominator is further expanded by using the so-called "Law of Total
Probability" to write

with the events A; being mutually exclusive and exhausting all possibilities and including
the event A as one of the A;.

The same formula, written in terms of probability density function models, takes the form:

flx| Agd)

g(A|x)=—
| £

)

A)e(A)dA

where f(x|4 ) is the probability model, or likelihood function, for the observed data x given
the unknown parameter (or parameters) A , g( ) isthe prior distribution model forA and
g( [x) isthe posterior distribution model for.A given that the data x have been observed.

When g( 4 [x) and g( ) both belong to the same distribution family, g(4 ) and

f(x|4 ) are called conjugate distributions and g(A ) isthe conjugate prior for f(x|.1 ). For
example, the Beta distribution model is a conjugate prior for the proportion of successes p
when samples have a binomial distribution. And the Gamma model is a conjugate prior for

the faillurerate A when sampling failure times or repair times from an exponentially
distributed population. This latter conjugate pair (gamma, exponential) is used extensively
in Bayesian system reliability applications.

How Bayes M ethodology isused in System Réliability Evaluation
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Bayesian Models and assumptions for using Bayes methodology will be described in alater section.
system Here we compare the classical paradigm versus the Bayesian paradigm when system
reliability reliability follows the HPP or exponential model (i.e., the flat portion of the Bathtub Curve).
evaluation

assumes the Classical Paradigm For System Reliability Evaluation:

system o The MTBF isone fixed unknown value - there is no “probability” associated with it
MTBF isa

« Failure datafrom atest or observation period allows you to make inferences about the

;ﬁg‘:‘%@ value of the true unknown MTBF

" chosen” « No other data are used and no “judgment” - the procedure is objective and based
according to solely on the test data and the assumed HPP model

aprior Bayesian Paradigm For System Reliability Evaluation:

diSt(;ielbution « The MTBF isarandom quantity with a probability distribution

mo

« The particular piece of equipment or system you are testing “chooses” an MTBF from
this distribution and you observe failure data that follow an HPP model with that
MTBF

« Prior to running the test, you already have some idea of what the MTBF probability
distribution looks like based on prior test data or an consensus engineering judgment

Advantages and Disadvantages of using Bayes M ethodology

Pro'sand While the primary motivation to use Bayesian reliability methodsistypically adesire to
con's for save on test time and materials cost, there are other factors that should also be taken into
using account. The table below summarizes some of these "good news" and "bad news"
Bayesian considerations.

methods

Bayesian Paradigm: Advantages and Disadvantages

Pro's Con's
o Usesprior information - this "makes « Prior information may not be
sense’ accurate - generating misleading
« If the prior information is encouraging, conclusions
less new testing may be needed to « Way of inputting prior information
confirm adesired MTBF at agiven (choice of prior) may not be correct
confidence « Customers may not accept validity of
« Confidenceintervalsarereally intervals prior data or engineering judgements
for the (random) MTBF - sometimes « Thereisno one "correct way" of
called "credibility intervals inputting prior information and

different approaches can give
different results

« Results aren't objective and don't
stand by themselves
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8.2. Assumptions/Prerequisites

This section describes how life distribution models and accel eration
models are typically chosen. Several graphical and analytical methods
for evaluating model fit are also discussed.

Detailed 2. Assumptions/Prerequisites
contents of
Section 2

1. How do you choose an appropriate life distribution model ?
1. Based on failure mode
Extreme value argument

M ultiplicative degradation argument

Fatigue life (Birnbaum-Saunders) argument

a r~ DN

Empirica model fitting - distribution free (Kaplan-Meier)
approach
2. How do you plot reliability data?

1. Probability plotting
2. Hazard and cum hazard plotting

3. Trend and growth plotting (Duane plots)

3. How can you test reliability model assumptions?
1. Visua tests
2. Goodness of fit tests
3. Likelihood ratio tests
4. Trend tests
4. How do you choose an appropriate physical acceleration model ?

5. What models and assumptions are typically made when Bayesian
methods are used for reliability evaluation?
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8.2.1.How do you choose an appropriate
life distribution model?

Choose Life distribution models are chosen for one or more of the following
models that three reasons:
make sense, 1. Thereisaphysical/statistical argument that theoretically matches
fit (tjhe data afailure mechanism to alife distribution model
ﬁg éfull 2. A particular model has previously been used successfully for the
ha\F/)ea Y same or asimilar failure mechanism
plausible 3. A convenient model provides agood empirical fit to all the failure
theoretical data
justification ~ Whatever method is used to choose a model, the model should
« "make sense" - for example, don't use an exponential model with
aconstant failure rate to model a"wear out" failure mechanism
« passvisual and statistical tests for fitting the data.
Models like the lognormal and the Weibull are so flexible that it is not
uncommon for both to fit asmall set of failure data equally well. Yet,
especially when projecting via acceleration models to a use condition far
removed from the test data, these two models may predict failure rates
that differ by orders of magnitude. That iswhy it is more than an
academic exerciseto try to find atheoretical justification for using a
particular distribution.
Thereare We will consider three well-known arguments of this type:
several « Extreme value argument
useful L .
theoretical « Multiplicative degradation argument
arguments « Fatigue life (Birnbaum-Saunders) model
to hel ph Note that physical/statistical arguments for choosing a life distribution
gul qlet © model are typically based on individual failure modes.
choice of a
model
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The Kaplan-Meier technique can be used when it is appropriate to just
"|et the data points speak for themselves' without making any model
assumptions. However, you generally need a considerable amount of
datafor this approach to be useful, and accel eration modeling is much
more difficult.
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8.2.1. How do you choose an appropriate life distribution model ?

8.2.1.1.Based on failure mode

Life
distribution
models and
physical
acceleration
models
typically
only apply
at the
individual
failure mode
level
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Failure mode data are failure data sorted by types of failures. Root
cause analysis must be done on each failure incident in order to
characterize them by failure mode. While this may be difficult and
costly, it isakey part of any serious effort to understand, model, project
and improve component or system reliability.

The natural place to apply both life distribution models and physical
acceleration modelsis at the failure mode level. Each component failure

mode will typically have its own life distribution model. The sameis
true for acceleration models. For the most part, these models only make
sense at the failure mode level, and not at the component or system
level. Once each mode (or mechanism) is modeled, the bottom-up

approach can be used to build up to the entire component or system.

In particular, the arguments for choosing alife distribution model
described in the next 3 sections apply at the failure mode level only.
These are the Extreme value argument, the Multiplicative degradation

argument and the Fatigue life (Birnbaum-Saunders) model.

The distribution-free (Kaplan - Meier) approach can be applied at any
level (mode, component, system, etc.).
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8.2.1.2.Extreme value argument

If component
or system
failure
occurs when
thefirst of
many
competing
failure

pr ocesses
reaches a
critical

point, then
Extreme
Value
Theory
suggests that
the Weibull
Distribution
will bea
good model

It iswell known that the Central Limit Theorem suggests that normal
distributions will successfully model most engineering data when the
observed measurements arise from the sum of many small random
sources (such as measurement errors). Practical experience validates
this theory - the normal distribution "works" for many engineering data
sets.

Less known isthe fact that Extreme Vaue Theory suggests that the

Weibull distribution will successfully model failure times for
mechanisms for which many competing similar failure processes are
"racing" to failure and the first to reach it (i.e., the minimum of alarge
collection of roughly comparable random failure times) produces the
observed failure time. Analogously, when alarge number of roughly
equivaent runners are competing and the winning time is recorded for
many similar races, these times are likely to follow a Weibull
distribution.

Note that this does not mean that anytime there are several failure
mechanisms competing to cause a component or system to fail, the
Weibull model applies. One or afew of these mechanisms may
dominate the others and cause almost all of the failures. Then the
"minimum of alarge number of roughly comparable’ random failure
times does not apply and the proper model should be derived from the
distribution models for the few dominating mechanisms using the
competing risk model.

On the other hand, there are many cases in which failure occurs at the
weakest link of alarge number of similar degradation processes or
defect flaws. One example of this occurs when modeling catastrophic
failures of capacitors caused by dielectric material breakdown. Typical
dielectric material has many "flaws" or microscopic sites where a
breakdown will eventually take place. These sites may be thought of as
competing with each other to reach failure first. The Weibull model,
as extreme value theory would suggest, has been very successful asa
life distribution model for this failure mechanism.
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8.2.1.3. Multiplicative degradation argument

;rhe | A brief verbal description of the multiplicative degradation argument
r?gg;rg be (leading to a derivation of the lognormal model) was given under Uses

applied when of the Lognormal Distribution Model. Here aformal derivation will be

degradation outlined because it gives insight into why the lognormal has been a
is caused by successful model for many failure mechanisms based on degradation

random processes.

_shocskasstshat Letyq, Yo, ...y, be measurements of the amount of degradation for a

|dncrr adation particular failure process taken at successive discrete instants of time as

ateg rate the process moves towards failure. Assume the following relationships
: exist between they's:

proportional

to the total _

amount ¥y =1+ gy

glrraeeadn}[/ wherethe .. are small, independent random perturbations or "shocks'

to the system that move the failure process along. In other words, the
increase in the amount of degradation from one instant to the next isa
small random multiple of the total amount of degradation already
present. Thisiswhat is meant by multiplicative degradation. The
situation is analogous to a snowball rolling down a snow covered hill;
the larger it becomes, the faster it grows because it is ableto pick up
even more snow.

We can express the total amount of degradation at the n-th instant of
time by

i !

[Ta+2)

Loi=] Y,

Wt — oy
. L
i L

where Xy isaconstant and the . are small random shocks. Next we

take natural logarithms of both sides and obtain:
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8.2.1.3. Multiplicative degradation argument

Inx, = ZJ l]”“ be )+ Inxg = ZJ (£ Hinxg

Using a Central Limit Theorem argument we can conclude that In x,
has approximately a normal distribution. But by the properties of the
lognormal distribution, this means that x,, (or the amount of

degradation) will follow approximately alognormal model for any n
(or at any timet). Since failure occurs when the amount of degradation
reaches a critical point, time of failure will be modeled successfully by
alognormal for thistype of process.

What kinds of failure mechanisms might be expected to follow a
multiplicative degradation model? The processes listed below are likely
candidates:

1. Chemical reactions |leading to the formation of new compounds
2. Diffusion or migration of ions
3. Crack growth or propagation

Many semiconductor failure modes are caused by one of these three
degradation processes. Therefore, it is no surprise that the lognormal
model has been very successful for the following semiconductor wear
out failure mechanisms:

1. Corrosion

Metal migration
Electromigration
Diffusion

Crack growth

ok~ DN
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8.2.1.4.Fatigue life (Birnbaum-Saunders)

model
A model The derivation of the Fatigue Life model is based on repeated cycles
derived from of stress causing degradation leading to eventual failure. The typical
random crack exampleis crack growth. One key assumption is that the amount of
growth degradation during any cycle is independent of the degradation in
occurring any other cycle, with the same random distribution.
during many _ _ _ _ _
independent When this assumption matches well with a hypothesized physical

cyclesof stress ~ model describing the degradation process, one would expect the
Birnbaum-Saunders model to be a reasonable distribution model
candidate. (See the note in the derivation for comments about the

difference between the lognormal model derivation and the Fatigue
Life model assumptions. Also see the comment on Miner's Rule).
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8.2.1.5. Empirical model fitting - distribution
free (Kaplan-Meier) approach

TheKaplan-  The Kaplan-Meier (K-M) Product Limit procedure provides quick,
Meier simple estimates of the Reliability function or the CDF based on failure
procedure data that may even be multicensored. No underlying model (such as
givesCDF  \weibull or lognormal) is assumed; K-M estimation is an empirical

estimatesfor  (non-parametric) procedure. Exact times of failure are required,
completeor  however.

censored

sampledata ~ Calculating Kaplan - Meier Estimates

\évslglcr);;tng a The steps for calculating K-M estimates are the following:

particular 1. Order the actual failure times from t; through t,, where there arer

distribution failures

model 2. Corresponding to each t;, associate the number n;, with n; = the
number of operating units just before the the i-th failure occurred
at timet;

3. Estimate R(t;) by (n; =1)/nq
4. Estimate R(t;) by R(tj.1) x (n; =1)/n;
5. Estimate the CDF F(t;) by 1 = R(t;)

Note that unfailed units taken off test (i.e., censored) only count up to

the last actual failure time before they were removed. They are included
in the n; counts up to and including that failure time, but not after.
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8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach

Example of A simple example will illustrate the K-M procedure. Assume 20 units

K-M areon lifetest and 6 failures occur at the following times: 10, 32, 56, 98,

estimate 122, and 181 hours. There were 4 unfailed units removed from the test

calculations  for other experiments at the following times: 50 100 125 and 150 hours.
The remaining 10 unfailed units were removed from the test at 200
hours. The K-M estimates for thislife test are:

R(10) = 19/20

R(32) = 19/20 x 18/19

R(56) = 19/20 x 18/19 x 16/17

R(98) = 19/20 x 18/19 x 16/17 x 15/16

R(122) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14

R(181) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14 x 10/11

A General Expression for K-M Estimates

A general expression for the K-M estimates can be written. Assume we
have n units on test and order the observed times for these n units from
t, to t,,. Some of these are actual failure times and some are running

times for units taken off test before they fail. Keep track of al the
indices corresponding to actual failure times. Then the K-M estimates
are given by:

~ Fi— 7

Rty =] —
jes H—j+1
Ejiif

with the "hat" over Rindicating it is an estimate and Sis the set of all
subscriptsj such that t; is an actual failure time. The notation j = Sand t;
less than or equal to t; means we only form products for indicesj that are
in Sand also correspond to times of failure less than or equal to t;.

Once values for R(t;) are calculated, the CDF estimates are
F(t) = 1- R()
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modification
of K-M
estimates
produces
better
results for
probability
plotting

NIST
SEMATECH

Modified K-M Estimates

The K-M estimate at the time of the last failureisR(t;) = O and F(t,) =
1. This estimate has a pessimistic bias and cannot be plotted (without
modification) on probability paper since the CDF for standard reliability
models asymptotically approaches 1 as time approaches infinity. Better
estimates for graphical plotting can be obtained by modifying the K-S
estimates so that they reduce to the median rank estimates for plotting
Type | Censored life test data (described in the next section). Modified
K-M estimates are given by the formula

n i+ 0.7 -7 +0.7
RE)=""LT] 2
ﬂ+ﬂ.4jES n—j+1.7
.ﬁji.ﬁj

Once values for R(t;) are calculated, the CDF estimates are F(t;)) = 1 -
R(t)
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8. Assessing Product Reliability

8.2. Assumptions/Prerequisites

8.2.2.How do you plot reliability data?

Plot
reliability
data on the
right
"special”
graph paper
and if the
points line up
approximately
on a straight
ling, the
assumed
model isa
reasonable fit

Graphical plots of reliability data are quick, useful visual tests of
whether a particular model is consistent with the observed data. The
basic idea behind virtually all graphical plotting techniquesisthe
following:

Points calculated from the data are placed on specialy
constructed graph paper and, aslong as they line up
approximately on astraight line, the analyst can conclude
that the data are consistent with the particular model the
paper is designed to test.
If the reliability data consist of (possibly multicensored) failure data
from anon repairable population (or arepairable population for which

only timeto thefirst failure is considered) then the models are life
distribution models such as the exponential, Weibull or lognormal. If

the data consist of repair times for arepairable system, then the model
might be the NHPP Power L aw and the plot would be a Duane Pliot.

The kinds of plotswe will consider for failure datafrom
non-repairable populations are:

o Probability (CDF) plots
o« Hazard and Cum Hazard plots

For repairable populations we have
« Trend plots (to check whether an HPP or exponential model
applies)
« Duane plots (to check whether the NHPP Power L aw applies)

Later on (Section 8.4.2.1) we will also ook at plots that can be used to
check acceleration model assumptions.

Note: Many of the plots discussed in this section can also be used to
obtain quick estimates of model parameters. Thiswill be coveredin
later sections. While there may be other, more accurate ways of
estimating parameters, simple graphical estimates can be very handy,
especialy when other techniques require software programs that are
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8.2.2.1. Probability plotting
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.2. How do you plot reliability data?

8.2.2.1.Probability plotting

Use Probability plots are ssmple visual ways of summarizing reliability data by plotting CDF

probability  estimates vs time on specially constructed probability paper.

plotsto see . : e e :

your data Commercial papers are available for all the typical life distribution models. One axis (some

and visually ~ Papersusethey-axis and others the x-axis, so you have to check carefully) islabeled "Time"

check and the other axisis labeled "Cum Percent" or "Percentile". There are rules, independent of the

model model or type of paper, for calculating plotting positions from the reliability data. These only

assumptions  depend on the type of censoring in the data and whether exact times of failure are recorded or
only readout times.

Plot each Remember that different failure modes can and should be separated out and individually

failure analyzed. When analyzing failure mode A, for example, treat failure times from failure modes

mode B, C, etc., as censored run times. Then repeat for failure mode B, and so on.

separately

Data points  When the points are plotted, the analyst fits a straight line through them (either by eye, or with

line up the aid of aleast squares fitting program). Every straight line on, say, Weibull paper uniquely

roughly on corresponds to a particular Weibull life distribution model and the same istrue for lognormal

a straight or exponential paper. If the points follow the line reasonably well, then the model is consistent

line when with the data. If it was your previously chosen model, there is no reason to question the choice.

the model Depending on the type of paper, there will be asimple way to find the parameter estimates that

chosenis correspond to the fitted straight line.

reasonable

Plotting Plotting Positions. Censored Data (Type | or Type 1)

positions on _ _ _ _ _

probability ~ Atthetimet; of thei-th failure, we need an estimate of the CDF (or the Cum. Population

paper Percent Failure). The simplest and most obvious estimate isjust 100 x i/n (with atotal of n

depend on units on test). This, however, is generally an overestimate (i.e. biased). Various texts

the type of recommend corrections such as 100 x (i-.5)/n or 100 x i/(n+1). Here, we recommend what are

data known as (approximate) median rank estimates:

censoring

Corresponding to thetime t; of thei-th failure, use a CDF or Percentile estimate of 100 x (i -
3)/(n+.4)

Plotting Positions. Readout Data

Let thereadout timesbe T4, T», ..., T, and let the corresponding new failures recorded at each
readout berq, ro, ..., . Again, there are n units on test.
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8.2.2.1. Probability plotting

Itisnot
difficult to
do
probability
plotting for
many
reliability
models even
without
specially
constructed
graph
paper

Corresponding to the readout time T, use a CDF or Percentile estimate of

Hijiﬁ
i=l

1

Plotting Positions. Multicensored Data

The calculations are more complicated for multicensored data. K-M estimates (described in a

preceding section) can be used to obtain plotting positions at every failure time. The more
precise Modified K-M Estimates are recommended. They reduce to the Censored Type | or the

Censored Type || median rank estimates when the data consist of only failures, without any
removals except possibly at the end of the test.

How Special PapersWork

The general ideaisto take the model CDF equation and write it in such away that a function
of F(t) isalinear equation of afunction of t. Thiswill be clear after afew examples. In the
formulas that follow, "In" always means "natural logarithm", while "log" always means "base
10 logarithm".

a) Exponential Model: Take the exponential CDF and rewrite it as

1
— |= At or, equivalently,
1-F({t)
1 A
log = £
1- F(#)) hlo

If welety=1{1-F(t)} andx=t, thenlog (y) islinear in x with slope A /In10. This shows we
can make our own special exponentia probability paper by using standard semi log paper
(with alogarithmic y-axis). Use the plotting position estimates for F(t;) described above

(without the 100 x multiplier) to calculate pairs of (x;,y;) points to plot.

If the data are consistent with an exponential model, the resulting plot will have points that

line up amost as a straight line going through the origin with slope A /In10.
b) Weibull Model: Take the Weibull CDF and rewriteit as

http://www.itl.nist.gov/div898/handbook/apr/section2/apr221.htm (2 of 6) [5/1/2006 10:42:04 AM]
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1
Inlnf —— |[=yInt-yhea
1- 7 (¢)
or, logln ! =ylogt—yloge
’ 1- F(¢)

If welety=In[1{1-F(t)}] and x = t, then log (y) islinear in log(x) with Slope /. This shows
we can make our own Weibull probability paper by using log log paper. Use the usual plotting
position estimates for F(t;) (without the 100 x multiplier) to calculate pairs of (X;,y;) pointsto

plot.

If the data are consistent with a Weibull model, the resulting plot will have points that line up
roughly on astraight line with slope” . Thisline will crossthe log x-axis at timet =t and the
logy axis (i.e, theintercept) at = ¥ log ¢ .

c) Lognormal Model: Take the lognormal cdf and rewriteit as
-1
Int=o® {F({)}+InTs,

T -1
or, logt =—@ {F(HH}+logT
24 10 1F(t)} Eizp

with ! denoti ng the inverse function for the standard normal distribution (taking a
probability as an argument and returning the corresponding "z* value).

Ifwelety=tandx= ! {F()}, thenlogy islinear in x with slope ¢ /In10 and intercept
(when F(t) = .5) of log Ts. We can make our own lognormal probability paper by using semi

log paper (with alogarithmic y-axis). Use the usual plotting position estimates for F(t;)
(without the 100 x multiplier) to calculate pairs of (x;,y;) points to plot.

If the data are consistent with alognormal model, the resulting plot will have points that line
up roughly on a straight line with slope ¢ /In10 and intercept Tg on the y-axis.

d) Extreme Value Distribution (Typel - for minimum): Take the extreme value distribution
CDF and rewrite it as

In {-In(l— F(x))} = (x—p2)/

If welety==In(1- F(x)), thenInyislinear in x with ope 1/ ;; and intercept -u/ ;3. We can
use semi log paper (with alogarithmic y-axis) and plot y vs x. The points should follow a
straight line with aslope of 1/ s In10 and an intercept of = #1n10. TheIn 10 factors are

needed because commercial log paper uses base 10 logarithms.
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8.2.2.1. Probability plotting

DATAPLOT Example

A Dataplot Using the Dataplot commands to generate Weibull random failure times, we generate 20

Weibull Weibull failure times with a shape parameter of y = 1.5and a = 500. Assuming atest time
exampleof  of T =500 hours, only 10 of these failure times would have been observed. They are, to the
probability  nearest hour: 54, 187, 216, 240, 244, 335, 361, 373, 375, and 386. First we will compute

plotting plotting position CDF estimates based on these failure times, and then a probability plot using
the "make our own paper" method.
(1) (2) © @
Fail = Time of Fail F(t;) estimate In{ 1/(1-F(t)}
(X) (i-.3)/20.4 (¥)
| 1 | 54 | 034 | .035
| 2 | 187 | .083 | .087
| 3 | 216 | 132 | 142
| 4 | 240 | 181 | .200
| 5 | 244 | 230 | .262
| 6 | 335 | 279 | .328
| 7 | 361 | .328 | .398
| 8 | 373 | 377 | AT4
| 9 | 375 | 426 | 556
| 10 | 386 | 475 | .645

Of course, with commercial Weibull paper we would plot pairs of points from column (2) and
column (3). With ordinary log log paper we plot (2) vs (4).

The Datapl ot sequence of commands and resulting plot follow:

LET X = DATA 54 187 216 240 244 335 361 373 375 386
LETY = DATA .035.087 .142 .2 .262 .328 .398 .474 .556 .645
XLOG ON

YLOG ON

XLABEL LOG TIME

YLABEL LOG LN (1/(1-F))

PLOT Y X
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Use of least
sguares
(regression)
techniqueto
fitaline
through the
points on
probability

paper

Datapl ot
has a
special
Weibull
probability
paper
function for
complete
data
samples (no
censoring)

8.2.2.1. Probability plotting

PLOTI ¥ X

1 1 L1 1 11 |
LOC LN (1/(1-F}

Loz LH (1f(1-F}

1 4 3

Loz IIME

Note that the configuration of points appears to have some curvature. Thisis mostly due to the
very first point on the plot (the earliest time of failure). The first few points on a probability
plot have more variability than pointsin the central range and less attention should be paid to
them when visually testing for "straightness'.

We could use Datapl ot to fit a straight line through the points via the commands

LET YY = LOG10(Y)
LET XX = LOG10(X)
FITYY XX

Thiswould give a dlope estimate of 1.46, which is close to the 1.5 value used in the
simulation.

The intercept is-4.114 and setting thisequal to - /' log ¢ we estimate ¢& = 657 (the "true"
value used in the simulation was 500).

Finaly, we note that Dataplot has a built-in Weibull probability paper command that can be
used whenever we have a complete sample (i.e., no censoring and exact failure times). First

you have to run PPCC to obtain an estimate of " = GAMMA. Thisis stored under SHAPE.
The full sequence of commands (with XLOG and Y LOG both set to OFF) is

SET MINMAX =1

WEIBULL PPCC PLOT SAMPLE
SET GAMMA = SHAPE
WEIBULL PLOT SAMPLE
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8. Assessing Product Reliability

8.2. Assumptions/Prereguisites

8.2.2. How do you plot reliability data?

8.2.2.2.Hazard and cum hazard plotting

Another
kind of
plotting,
called
Cum
Hazard
Plotting,
has the
same
purpose as
probability
plotting

Just commercia probability paper is available for most life distribution models for
probability plotting of reliability data, there are also special Cum Hazard Plotting papers
available for many life distribution models. These papers plot estimates for the Cum

Hazard H(t))vs thetimet; of thei-th failure. As with probability plots, the plotting

positions are calculated independently of the model or paper used and a reasonable
straight-line fit to the points confirms that the chosen model and the data are consistent.

Advantages of Cum Hazard Plotting

1. Itismuch easier to calculate plotting positions for multicensored data using cum
hazard plotting techniques.

2. Linear graph paper can be used for exponential data and log-log paper can be used
for Weibull data.

Disadvantages of Cum Hazard Plotting
1. Commercial Cum Hazard paper may be difficult to find.

2. Itislessintuitively clear just what is being plotted. Cum percent failed (i.e.,
probability plots) is meaningful and the resulting straight-line fit can be used to
read off times when desired percents of the population will have failed. Percent
cumulative hazard increases beyond 100% and is harder to interpret.

3. Normal cum hazard plotting techniques require exact times of failure and running
times.

4. With computersto calculate the K-M estimates for probability plotting, the main
advantage of cum hazard plotting goes away.

Since probability plots are generally more useful, we will only give a brief description of
hazard plotting.

How to Make Cum Hazard Plots

1. Order the failure times and running times for each of the n unitson test in
ascending order from 1 to n. The order is called the rank of the unit. Calculate the
reverse rank for each unit (reverse rank = n- rank +1).

2. Calculate aHazard "value" for every failed unit (do this only for the failed units).
The Hazard value for the failed unit with reverse rank kisjust 1/k.

3. Caculate the cumulative hazard values for each failed unit. The cumulative hazard
value corresponding to a particular failed unit is the sum of all the hazard values
for failed units with ranks up to and including that failed unit.
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A life test
cum
hazard
plotting
example

Aswith
probability
plotting,
you can
make your
own
special
hazard
plotting
paper for
many
models

8.2.2.2. Hazard and cum hazard plotting

4. Plot thetime of fail vsthe cumulative hazard value on special Cum Hazard paper
(or construct your own paper as covered below for the exponential and the Weibull
model).

Example: Ten units were tested at high stresstest for up to 250 hours. Six failures
occurred at 37, 73, 132, 195, 222 and 248 hours. Four units were taken off test without
failing at the following run times: 50, 100, 200 and 250 hours. Cum hazard values were
computed in the following table:

. (1) 1= f( ;)I ure (3) (4) H a(252/a| (6)
Time of Event O=runtime Rank | Reverse Rank 2) x 1/(4) Cum Hazard Value
] 37 | 1 | 1 | 10 ] 1/10 | 10
|50 o0 12| 9 | |
| 73 | 1 | 3 | 8 | 8 | 225
| 10 | o | 4] 7 | |
| 132 | 1 | 5 | 6 | 16 | 391
] 195 | 1 | 6 | 5 ] 1/5 | 591
| 200 | 0 [ 7| 4 | |
] 222 | 1 | 8 | 3 ] 1/3 | 924
] 248 | 1 | 9 | 2 ] 1/2 | 1.424
] 250 | 0 | 10 | 1 ] |

Next ignore the rows with no cum hazard value and plot column (1) vs column (6).

Exponential and Weibull " Homemade" Hazard Paper

The cum hazard for the exponential isjust H(t) = A t, whichislinear int witha0
intercept. So asimple linear graph paper plot of y = col (6) vsx = col (1) should line up

as approximately a straight line going through the origin with slope A if the exponential
model is appropriate. The Dataplot commands and graph of this are shown below:

LET X = DATA 37 73 132 195 222 248
LETY =DATA .1.225 .391 .591 .924 1.424
PLOT Y X
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8.2.2.2. Hazard and cum hazard plotting

FLOT % X

o an ron S0 200 450 00

The cum Hazard for the Weibull is ** {7} = £/ )" 55 aplot of y vs x on log log paper

should resemble a straight line with slope | if the Weibull model is appropriate. The
Dataplot commands and graph of this are shown below:

XLOG ON
YLOG ON
PLOTY X
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8.2.2.2. Hazard and cum hazard plotting

PLOTI X X

The equation of the least squares line fit through these points can be found from

LET YY = LOG10(Y)
LET XX = LOG10(X)
FITY X

The Weibull fit looks better, although the slope estimate is 1.27, which is not far from an
exponential model slope of 1. Of course, with a sample of just 10, and only 6 failures, it
isdifficult to pick amodel from the data alone.
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8. Assessing Product Reliability

8.2. Assumptions/Prerequisites

8.2.2. How do you plot reliability data?

8.2.2.3.Trend and growth plotting (Duane

Repair rates
aretypically
either nearly
constant over
timeor else
consistently
follow a
good or a
bad trend

Afew simple
plots can
help us
decide
whether
trendsare
present

plots)

Models for repairable systems were described earlier. These models are
for the cumulative number of failuress (or the repair rate) over time.

The two models used with most success throughout industry are the
HPP (constant repair rate or "exponential™ system model) and the

NHPP Power Law process (the repair rate is the polynomia m(t) =

i
—
ot 7y,

Before constructing a Duane Plot, there are afew simple trend plots
that often convey strong evidence of the presence or absence of atrend
in the repair rate over time. If thereis no trend, an HPP model is
reasonable. If there is an apparent improvement or degradation trend, a
Duane Plot will provide avisual check for whether the NHPP Power
law model is consistent with the data.

These ssimple visual graphical testsfor trends are

1. Plot cumulative failures versus system age (a step function that
goes up every time thereisanew failure). If this plot looks
linear, there is no obvious improvement (or degradation) trend. A
bending downward indicates improvement; bending upward
indicates degradation.

2. Plot theinter arrival times between new failures (in other words,
the waiting times between failures, with the time to the first
failure used as thefirst "inter-arrival" time). If these trend up,
there is improvement; if they trend down, there is degradation.

3. Plot thereciprocals of the inter-arrival times. Each reciprocal isa
new failure rate estimate based only on the waiting time since the
last failure. If these trend down, there is improvement; an upward
trend indicates degradation.
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8.2.2.3. Trend and growth plotting (Duane plots)

Trend plots
and a Duane
Plot for
actual
Reliability

I mprovement
Test data

Case Study 1. Useof Trend Plots and Duane Plotswith Reliability
Improvement Test Data

A prototype of anew, complex piece of equipment went through a
1500 operationa hours Reliability Improvement Test. During the test

there were 10 failures. As part of the improvement process, a cross
functional Failure Review Board made sure every failure was analyzed
down to the root cause and design and parts selection fixes were
implemented on the prototype. The observed failure times were: 5, 40,
43, 175, 389, 712, 747, 795, 1299 and 1478 hours, with the test ending
at 1500 hours. The reliability engineer on the Failure Review Board
first made trend plots as described above, then made a Duane plot.
These plots (using EXCEL) follow.

Cu rnal ative Plot

10 /’/;
8
|-
% G
. 4
=
=
E_
0
0 &S00 1000 1500

System Age
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hteramval Time Vs, il Number
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u
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m g B
0 R L : : :
1] P i b o 0
Fail Num ber

Regproca Interardval Times

Fail Mum ber
Time Cum MTBF
5 5
40 20
43 14.3
175 43.75
389 77.8
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712
147
795
1299
1478

1600

G Hazard

100

10

100

118.67
106.7
99.4
144.3
147.8

Duane Plot

10.00

100.00

Sysem Aget

10000.00

Comments:. The three trend plots al show an improvement trend. The
reason it might help to try al three isthat there are examples where
trends show up clearer on one of these plots, as compared to the others.
Formal statistical tests on the significance of this visual evidence of a

trend will be shown in the section on Trend Tests.

The points on the Duane Plot line up roughly as a straight line,
indicating the NHPP Power Law model is consistent with the data.

Estimates for the reliability growth slope and the MTBF at the end of
thistest for this case study will be given in alater section.
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.3.How can you test reliability model
assumptions?

Models are Since reliability models are often used to project (extrapolate) failure
frequently rates or MTBF's that are well beyond the range of the reliability data

necessary - used to fit these models, it is very important to "test" whether the
but should models chosen are consistent with whatever data are available. This
always be section describes several ways of deciding whether amodel under
checked examination is acceptable. These are:

1. Visual Tests

2. Goodness of Fit Tests
3. Likelihood Ratio Tests
4. Trend Tests
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8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.1.Visual tests

Avisual test  We have already seen many examples of visual tests of models. These
of amodel is  were: Probability Plots, Cum hazard Plots, Duane Plots and Trend Plots.

asimple In al but the Trend Plots, the model was "tested' by how well the data
plot that points followed a straight line. In the case of the Trend Plots, we |ooked
tellsusat a for curvature away from a straight line (cum repair plots) or increasing
glance or decreasing size trends (inter arrival times and reciprocal inter-arrival
whether the  times).

model is : : : :

consistent These ssimple plots are a powerful diagnostic tool since the human eye

with the can often detect patterns or anomaliesin the data by studying graphs.
That kind of invaluable information would be lost if the analyst only

data
used quantitative statistical tests to check model fit. Every analysis
should include as many visual tests as are applicable.
Advantages of Visual Tests

1. Easy to understand and explain.

2. Can occasionaly reveal patterns or anomaliesin the data.

3. When amodel "passes’ avisual test, it is somewhat unlikely any
quantitative statistical test will "reject” it (the human eyeisless
forgiving and more likely to detect spurious trends)

Combine Disadvantages of Visual Tests
visual tests 1. Visual tests are subjective.
with formal , :
o 2. They do not quantify how well or how poorly amodel fitsthe
guantitative data,
tests for the _ _ _
"best of both 3. They are of little help in choosing between two or more
worlds" competing models that both appear to fit the data.
approach 4. Simulation studies have shown that correct models may often

appear to not fit well by sheer chance - it is hard to know when
visual evidence is strong enough to reject what was previously
believed to be a correct model.

Y ou can retain the advantages of visual tests and remove their
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8.2.3.1. Visual tests

disadvantages by combining data plots with formal statistical tests of
goodness of fit or trend.
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8.2.3.2.Goodness of fit tests

A Goodness  General tests for checking the hypothesis that your data are consistent

of Fit test with a particular model are discussed in Chapter 7. Details and examples
checks on of the Chi-Square Goodness of Fit test and the Kolmolgorov-Smirnov
whether (K-S) test are given in Chapter 1. The Chi-Square test can be used with
your data Type | or Type || censored data and readout data if there are enough
are failures and readout times. The K-S test generally requires complete
reasonable e : A :
: samples, which limitsits usefulness in reliability analysis.
or highly
unlikely, These tests control the probability of rejecting avalid model as follows:
given an « theanalyst ch fidence level designated by 100 x (1 -
—ssumed IrEean yst chooses a confidence level design y (
distribution )
model « atest statistic is calculated from the data and compared to likely
values for this statistic, assuming the model is correct.
« if thetest statistic hasavery unlikely value, or less than or equal
to an & probability of occurring, where ez isasmall valuelike .1
or .05 or even .01, then the model is rejected.
So the risk of rejecting the right model is kept to e or less, and the
choice of & usually takesinto account the potential loss or difficulties
incurred if the model is rejected.
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.3. How can you test reliability model assumptions?

8.2.3.3.Likelihood ratio tests

Likelihood Likelihood functions for reliability data are described in Section 4. Two

Ratio Tests ways we use likelihood functions to choose models or verify/validate

area assumptions are:

powerful, _ o

very general 1. Calculate the maximum likelihood of the sample data based on an

method of assumed distribution model (the maximum occurs when unknown

testing model ~ Parameters are replaced by their maximum likelihood estimates).

assumptions. Repeat this calculation for other candidate distribution models that also

However, appear to fit the data (based on probability plots). If all the models have

they require the same number of unknown parameters, and there is no convincing

special reason to choose one particular model over another based on the failure

software, not ~ mechanism or previous successful analyses, then pick the model with

always the largest likelihood value.

;3?;3/)' o 2. Many model assumptions can be viewed as putting restrictions on the
' parametersin alikelihood expression that effectively reduce the total

number of unknown parameters. Some common examples are:

Examples 1) It is suspected that atype of data, typically modeled by a

where Weibull distribution, can be fit adequately by an

assumptions exponential model. The exponential distributionisa

can be tested specia case of the Weibull, with the shape parameter /* set

by the to 1. If we write the Weibull likelihood function for the

IF_zlaktieIc; f_}gl data, the exponential model likelihood function is obtained

by setting / to 1, and the number of unknown parameters
has been reduced from two to one.

I1) Assume we have n cells of data from an acceleration
test, with each cell having a different operating
temperature. We assume alognormal population model
appliesin every cell. Without an acceleration model
assumption, the likelihood of the experimental data would
be the product of the likelihoods from each cell and there
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Details of
the
Likelihood
Ratio Test
procedure

In general,
calculations
are difficult
and need to
be built into
the software
you use

8.2.3.3. Likelihood ratio tests

would be 2n unknown parameters (a different Tgg and &
for each cell). If we assume an Arrhenius model applies,
the total number of parameters drops from 2n to just 3, the

single common & and the Arrhenius A and /4 H
parameters. This acceleration assumption "saves' (2n-3)
parameters.

1) We life test samples of product from two vendors. The
product is known to have a failure mechanism modeled by
the Weibull distribution, and we want to know whether
thereisadifference in reliability between the vendors. The
unrestricted likelihood of the datais the product of the two
likelihoods, with 4 unknown parameters (the shape and
characteristic life for each vendor population). If, however,
we assume no difference between vendors, the likelihood
reduces to having only two unknown parameters (the
common shape and the common characteristic life). Two
parameters are "lost" by the assumption of "no difference".

Clearly, we could come up with many more examples like these three,
for which an important assumption can be restated as a reduction or
restriction on the number of parameters used to formulate the likelihood
function of the data. In all these cases, thereisasimple and very useful
way to test whether the assumption is consistent with the data.

TheLikelihood Ratio Test Procedure

Let L, be the maximum value of the likelihood of the data without the
additional assumption. In other words, L, isthelikelihood of the data

with all the parameters unrestricted and maximum likelihood estimates
substituted for these parameters.

Let Ly be the maximum value of the likelihood when the parameters are

restricted (and reduced in number) based on the assumption. Assume k
parameters were lost (i.e., Ly has k less parameters than L ).

Formtheratio A =Lg/L. Thisratioisaways between 0 and 1 and the

less likely the assumption is, the smaller A will be. This can be
guantified at a given confidence level asfollows:

1. Caculate ¥ =-2Ind . Thesmaller A is thelarger ¥~ will be.

2. Wecantell when ¥~ Issignificantly large by comparing it to the
upper 100 x (1- ) percentile point of a Chi Square distribution
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with k degrees of freedom. %~ has an approximate Chi-Square
distribution with k degrees of freedom and the approximation is
usually good, even for small sample sizes.

=

3. Thelikelihood ratio test computes & " and rejects the assumption

if £ islarger than a Chi-Square percentile with k degrees of
freedom, where the percentile corresponds to the confidence
level chosen by the analyst.
Note: While Likelihood Ratio test procedures are very useful and
widely applicable, the computations are difficult to perform by hand,
especially for censored data, and appropriate software is necessary.
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8.2. Assumptions/Prerequisites

8.2.3. How can you test reliability model assumptions?

8.2.3.4.Trend tests

Formal
Trend Tests
should
accompany
Trend Plots
and Duane
Plots. Three
aregivenin
this section

The Reverse
Arrangement
Test (RAT
test) issimple
and makes no
assumptions
about what
model atrend
might follow

In this section we look at formal statistical tests that can allow usto
quantitatively determine whether or not the repair times of a system
show a significant trend (which may be an improvement or a
degradation trend). The section on trend and growth plotting contained
adiscussion of visual tests for trends - this section complements those
visual tests as several numerical tests are presented.

Three statistical test procedures will be described:

1. The Reverse Arrangement Test (asimple and useful test that has
the advantage of making no assumptions about a model for the
possible trend)

2. The Military Handbook Test (optimal for distinguishing between
"no trend' and atrend following the NHPP Power Law or Duane
model)

3. The Laplace Test (optimal for distinguishing between "no trend'
and atrend following the NHPP Exponential Law model)

The Reverse Arrangement Test

Assumethere arer repairs during the observation period and they
occurred at system ages Ty, Ty, Ty, ... T, (we set the start of the

observation periodto T=0). Let I, = Ty,

lo=Ty-Tq,13=T3-Ty, ..., I, = T, - T;.1 betheinter-arrival timesfor
repairs (i.e., the sequence of waiting times between failures). Assume
the observation period ends at time Tg,g> T,

Previoudly, we plotted this sequence of inter-arrival timesto look for
evidence of trends. Now, we calculate how many instances we have of
alater inter-arrival time being strictly greater than an earlier
inter-arrival time. Each time that happens, we call it areversal. If there
are alot of reversals (more than are likely from pure chance with no
trend), we have significant evidence of an improvement trend. If there
are too few reversals we have significant evidence of degradation.
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8.2.3.4. Trend tests

A useful table
to check
whether a
reliability test
has
demonstrated
significant

I mprovement

A formal definition of the reversal count and some properties of this
count are:

« count areversal every timel; < I, for somej and kwithj <k

o thisreversal count isthetotal number of reversas R

« forr repair times, the maximum possible number of reversalsis
r(r-1)/2

« if there are no trends, on the average one would expect to have
r(r-1)/4 reversals.

As asimple example, assume we have 5 repair times at system ages 22,
58, 71, 156 and 225, and the observation period ended at system age
300 . First calculate the inter arrival times and obtain: 22, 36, 13, 85,
69. Next, count reversals by "putting your finger" on the first
inter-arrival time, 22, and counting how many later inter arrival times
are greater than that. In this case, there are 3. Continue by "moving
your finger" to the second time, 36, and counting how many later times
are greater. There are exactly 2. Repeating this for the third and fourth
inter-arrival times (with many repairs, your finger gets very tired!) we
obtain 2 and O reversals, respectively. Adding3+2+2+0=7, wesee
that R= 7. Thetotal possible number of reversalsis 5x4/2 = 10 and an
"average" number is half this, or 5.

In the example, we saw 7 reversals (2 more than average). Isthis
strong evidence for an improvement trend? The following table allows
us to answer that at a 90% or 95% or 99% confidence level - the higher
the confidence, the stronger the evidence of improvement (or the less
likely that pure chance alone produced the result).

Value of R Indicating Significant Improvement (One-Sided Test)
Minimum Rfor | Minimum Rfor | Minimum Rfor

Nggpba?:s()f 90% Evidence of | 95% Evidence of | 99% Evidence of
| mprovement I mprovement I mprovement
I T T
5 ] 9 | 9 | 10
| 6 ] 12 ] 13 ] 14
| 7 ] 16 ] 17 ] 19
| 8 ] 20 ] 22 ] 24
| 9 ] 25 ] 27 ] 30
| 10 ] 31 ] 33 ] 36
. 37 | 39 | 43
| 12 ] 43 ] 46 ] 50

One-sided test means before looking at the data we expected
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Usethis
formula when
thereare
more than 12
repairsinthe
data set

improvement trends, or, at worst, a constant repair rate. Thiswould be
the case if we know of actions taken to improve reliability (such as
occur during reliability improvement tests).

For the r = 5 repair times example above where we had R =7, the table
shows we do not (yet) have enough evidence to demonstrate a
significant improvement trend. That does not mean that an
improvement model isincorrect - it just meansit is not yet "proved"
statistically. With small numbers of repairs, it is not easy to obtain
significant results.

For numbers of repairs beyond 12, there is a good approximation
formulathat can be used to determine whether Rislarge enough to be
significant. Calculate

Fir—1) _
I — l S+ 5

I..". A "
[(2r +3)r = 1r
|

\ 72

and if z> 1.282, we have at least 90% significance. If z> 1.645, we
have 95% significance and a z > 2.33 indicates 99% significance. Since
z has an approximate standard normal distribution, the Datapl ot
command

LET PERCENTILE = 100* NORCDF(z)
will return the percentile corresponding to z.

& =

That coversthe (one-sided) test for significant improvement trends. If,
on the other hand, we believe there may be a degradation trend (the
system is wearing out or being over stressed, for example) and we want
to know if the data confirms this, then we expect alow value for R and
we need atable to determine when the value is low enough to be
significant. The table below gives these critical valuesfor R.

Vaue of R Indicating Significant Degradation Trend (One-Sided Test)

Number of Maximl_Jm Rfor Maximgm Rfor Maximl_Jm Rfor
Repairs 90% Evidence of | 95% Evidence of | 99% Evidence of
Degradation Degradation Degradation
|4 0 | 0 | :
|5 | 1 | 1 | 0
|6 | 3 | 2 | 1
7 5 | 4 | 2
| 8 | 8 | 6 | 4
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Because of
the success of
the Duane
model with
industrial
Improvement
test data, this
Trend Test is
recommended

9 | 11 | 9 | 6
10 ] 14 | 12 | 9
] 18 | 16 | 12
2 23 | 20 | 16

For numbers of repairsr >12, use the approximation formula above,
with Rreplaced by [r(r-1)/2 - R].

The Military Handbook Test

Thistest is better at finding significance when the choice is between no
trend and a NHPP Power Law (Duane) model. In other words, if the
data come from a system following the Power Law, this test will
generaly do better than any other test in terms of finding significance.

As before, we haver times of repair T, Ty, T3, ... T, with the
observation period ending at time Tg,4> T,. Calculate

T

= = E ]H £ M

13, L] 7
and compare this to percentiles of the chi-square distribution with 2r
degrees of freedom. For a one-sided improvement test, reject no trend
(or HPP) in favor of an improvement trend if the chi square valueis
beyond the upper 90 (or 95, or 99) percentile. For a one-sided
degradation test, regject no trend if the chi-square value is less than the
10 (or 5, or 1) percentile.

Applying thistest to the 5 repair times example, the test statistic has
value 13.28 with 10 degrees of freedom, and the following Datapl ot
command eval uates the chi-square percentile to be 79%:

LET PERCENTILE = 100* CHSCDF(13.28,10)
TheLaplace Test

Thistest is better at finding significance when the choice is between no
trend and a NHPP Exponential model. In other words, if the data come
from a system following the Exponential Law, thistest will generally
do better than any test in terms of finding significance.

As before, we haver times of repair T4, Tp, T3, ... T, with the
observation period ending at time To,>T,. Calculate
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Formal tests
generally
confirmthe
subjective
information
conveyed by
trend plots
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and compare this to high (for improvement) or low (for degradation)
percentiles of the standard normal distribution. The Dataplot command

LET PERCENTILE = 100* NORCDF(2)
will return the percentile corresponding to z.

Case Study 1: Reliability Test Improvement Data (Continued from
earlier work)

The failure data and Trend plots and Duane plot were shown earlier.

The observed failure timeswere: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours.

Reverse Arrangement Test: Theinter-arrival times are: 5, 35, 3, 132,
214, 323, 35, 48, 504 and 179. The number of reversalsis 33, which,
according to the table above, isjust significant at the 95% level.

The Military Handbook Test: The Chi-Square test statistic, using the
formula given above, is 37.23 with 20 degrees of freedom. The
Dataplot expression

LET PERCENTILE = 100* CHSCDF(37.23,20)

yields asignificance level of 98.9%. Since the Duane Plot looked very
reasonable, this test probably gives the most precise significance
assessment of how unlikely it isthat sheer chance produced such an
apparent improvement trend (only about 1.1% probability).

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/apr/section2/apr234.htm (5 of 5) [5/1/2006 10:42:13 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.2.4. How do you choose an appropriate physical acceleration model?

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

8. Assessing Product Reliability
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8.2.4.How do you choose an appropriate
physical acceleration model?

Choosing a
good
acceleration
model is
part science
and part art
- but start
with a good
literature
search

Choosing a physical acceleration model isalot like choosing alife
distribution model. First identify the failure mode and what stresses are
relevant (i.e., will accelerate the failure mechanism). Then check to see
if the literature contains examples of successful applications of a
particular model for this mechanism.

If the literature offerslittle help, try the models described in earlier
sections::

e Arrhenius
o The(inverse) power rule for voltage

o The exponential voltage model

o Two temperature/voltage models

o The dectromigration model

e Three stress models (temperature, voltage and humidity)

« Eyring (for more than three stresses or when the above models
are not satisfactory)

o The Coffin-Manson mechanical crack growth model

All but the last model (the Coffin-Manson) apply to chemical or
electronic failure mechanisms, and since temperature is almost always a
relevant stress for these mechanisms, the Arrhenius model is nearly
always a part of any more general model. The Coffin-Manson model
works well for many mechanical fatigue-related mechanisms.

Sometimes models have to be adjusted to include athreshold level for
some stresses. In other words, failure might never occur dueto a
particular mechanism unless a particular stress (temperature, for
example) is beyond athreshold value. A model for a
temperature-dependent mechanism with athreshold at T = Ty might

look like
timeto fail = f(T)/(T-Tg)
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8.2.4. How do you choose an appropriate physical acceleration model?

for which f(T) could be Arrhenius. As the temperature decreases
towards T, time to fail increases toward infinity in this (deterministic)

acceleration mode!.

In some cases, a mathematical/physical description of the failure
mechanism can lead to an acceleration model. Some of the models
above were originally derived that way.

In general, use the simplest model (fewest parameters) you can. When
you have chosen a model, use visual tests and formal statistical fit tests
to confirm the model is consistent with your data. Continue to use the
model aslong asit gives results that "work," but be quick to ook for a
new model when it is clear the old one is no longer adequate.

There are some good quotes that apply here:

"All models are wrong, but some are useful.” - George Box, and the
principle of Occam's Razor (attributed to the 14th century logician
William of Occam who said “Entities should not be multiplied
unnecessarily” - or something equivalent to that in Latin).

A modern version of Occam's Razor is: If you have two theories that
both explain the observed facts then you should use the ssmplest one
until more evidence comes along - also called the L aw of Parsimony.

Finally, for those who feel the above quotes place too much emphasis on
simplicity, there are several appropriate quotes from Albert Einstein:

"Make your theory as simple as possible, but no simpler”

"For every complex question there is a simple and wrong
solution."
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8.2.5.What models and assumptions are
typically made when Bayesian methods
are used for reliability evaluation?

Bayesian
assumptions
for the
gamma
exponential
system
model

The basics of Bayesian methodology were explained earlier, along with some of
the advantages and disadvantages of using this approach. Here we only consider

the models and assumptions that are commonplace when applying Bayesian
methodology to evaluate system reliability.

Assumptions:

1. Failure times for the system under investigation can be adequately modeled
by the exponential distribution. For repairable systems, this means the HPP

model applies and the system is operating in the flat portion of the bathtub
curve. While Bayesian methodology can also be applied to non-repairable

component populations, we will restrict ourselves to the system application in
this Handbook.

2. The MTBF for the system can be regarded as chosen from a prior distribution
model that is an analytic representation of our previous information or
judgments about the system's reliability. The form of this prior model isthe
gamma distribution (the conjugate prior for the exponential model). The prior

model is actually defined for A = 1/MTBF sinceit iseasier to do the
calculations thisway.

3. Our prior knowledge is used to choose the gamma parameters a and b for the

prior distribution model for A . There are many possible ways to convert
"knowledge" to gamma parameters, depending on the form of the "knowledge"
- we will describe three approaches.
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8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?

Several
ways to
choose the
prior
gamma
parameter
values

1) If you have actual data from previous testing done on the system (or a
system believed to have the same reliability as the one under
investigation), thisis the most credible prior knowledge, and the easiest
to use. Simply set the gamma parameter a equal to the total number of
failures from all the previous data, and set the parameter b equal to the
total of all the previous test hours.

I1) A consensus method for determining a and b that works well is the
following: Assemble a group of engineers who know the system and its
sub-components well from areliability viewpoint.

0 Have the group reach agreement on a reasonable MTBF they
expect the system to have. They could each pick a number they
would be willing to bet even money that the system would either
meet or miss, and the average or median of these numbers would
be their 50% best guess for the MTBF. Or they could just discuss
even-money MTBF candidates until a consensusis reached.

0 Repeat the process again, this time reaching agreement on alow
MTBF they expect the system to exceed. A "5%" value that they
are "95% confident" the system will exceed (i.e., they would give
19 to 1 odds) isagood choice. Or a"10%" value might be chosen
(i.e., they would give 9 to 1 odds the actual MTBF exceeds the low
MTBF). Use whichever percentile choice the group prefers.

o Call the reasonable MTBF MTBF 5, and the low MTBF you are
95% confident the system will exceed MTBFgs. These two
numbers uniquely determine gamma parameters a and b that have

A percentile values at the right locations
.-"-:.-.-u., [ = ]. .I'. fl .;'I .."..'-'r.".'_;.,:", n'."l.['ld .-":.4;;.; = 1 .I'. ;'J ;'I -."..'-'rfl';::.;

We call this method of specifying gamma prior parameters the

50/95 method (or the 50/90 method if we use MTBFg, €etc.). A

simple way to calculate a and b for this method, using EXCEL, is

described below.
lii) A third way of choosing prior parameters starts the same way as the
second method. Consensus is reached on an reasonable MTBF, MTBFx,.
Next, however, the group decides they want a somewhatweak prior that
will change rapidly, based on new test information. If the prior parameter
"a" isset to 1, the gamma has a standard deviation equal to its mean,
which makes it spread out, or "weak". To insure the 50th percentile is set

atd 55 =1 MTBFgy, we have to choose b = In 2 x MTBF5,, which is
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After a new
test isrun,
the
posterior
gamma
parameters
areeasly
obtained
fromthe
prior
parameters
by adding
the new
number of
failsto"a"
and the new
test timeto
"

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?

approximately .6931 x MTBFx,.

Note: Aswe will see when we plan Bayesian tests, thisweak prior is
actually avery friendly prior in terms of saving test time

Many variations are possible, based on the above three methods. For example,
you might have prior data from sources that you don't completely trust. Or you
might question whether the data really apply to the system under investigation.
Y ou might decide to "weight" the prior data by .5, to "weaken" it. This can be
Implemented by setting a = .5 x the number of failsin the prior dataand b = .5
times the number of test hours. That spreads out the prior distribution more, and
lets it react quicker to new test data.

Consequences

No matter how you arrive at values for the gamma prior parameters a and b, the
method for incorporating new test information is the same. The new
information is combined with the prior model to produce an updated or

posterior distribution model for.d .

Under assumptions 1 and 2, when a new test is run with T system operating

hours and r failures, the posterior distribution for A isstill agamma, with new
parameters.

a=a+r,b=b+T

In other words, add to a the number of new failures and add to b the number of
new test hours to obtain the new parameters for the posterior distribution.

Use of the posterior distribution to estimate the system MTBF (with confidence,
or prediction, intervals) is described in the section on estimating reliability

using the Bayesian gamma mode.

Using EXCEL To Obtain Gamma Parameters
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EXCEL can
easily solve
for gamma
prior
parameters
when using
the "50/95"
consensus
method

We will describe how to obtain a and b for the 50/95 method and indicate the
minor changes needed when any 2 other MTBF percentiles are used. The
step-by-step procedureis
1. Calculatetheratio RT = MTBF5y/MTBFs.
2. Open an EXCEL spreadsheet and put any starting value guessfor ain Al
- say 2.

Moveto B1 and type the following expression:

= GAMMAINV(.95,A1,1)/GAMMAINV(.5,A1,1)

Press enter and a number will appear in B1. We are going to use the
"Goal Seek" tool EXCEL hasto vary A1 until the number in B1 equals
RT.

3. Click on"Tools" (on the top menu bar) and then on "Goal Seek". A box
will open. Click on "Set cell" and highlight cell B1. $B$1 will appear in
the "Set Cell" window. Click on "To value" and type in the numerical
value for RT. Click on "By changing cell" and highlight A1 ($A$1 will
appear in "By changing cell™). Now click "OK" and watch the value of
the"a" parameter appear in Al

4. Goto Clandtype

= 5*MTBF5;* GAMMAINV(.5, AL, 2)

and the value of b will appear in C1 when you hit enter.
Example
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An EXCEL
example
using the
"50/95"
consensus
method

A group of engineers, discussing the reliability of a new piece of equipment,
decide to use the 50/95 method to convert their knowledge into a Bayesian
gamma prior. Consensus is reached on alikely MTBFj value of 600 hours and

alow MTBFqg value of 250. RT is600/250 = 2.4. The figure below shows the
EXCEL 5.0 spreadsheet just prior to clicking "OK" in the "Goal Seek" box.

@! File Edit Wiew [nsert Format Tools Data Window Help
N EENEFE I EE E R E R R P R

Arial ][0 [z][B]z]u] =] =ZIEIEAF
NEIE

E1 ¥ =EAMBAINYID. 95 AT TV GAMMAINYID.S AT 1)
A B C D E F G
2 28265120

oal Seek E3
Set cell: ($B$1 | (1] .4 l

To value: |2 4 Cancel I

By changing cell: ($A31|
Help I

—t | —
ol e

After clicking "OK", the valuein Al changes from 2 to 2.862978. This new
valueisthe prior a parameter. (Note: if the group felt 250 was a MTBF 4 value,

instead of a MTBF 5 value, then the only change needed would be to replace
0.95 in the B1 equation by 0.90. This would be the "50/90" method.)

The figure below shows what to enter in C1 to obtain the prior "b" parameter
value of 1522.46.
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% Microsoft Excel - Boolk1

@;! File Edit Wiew Insert Format Tools Data Window Help

N EFEIEREEREEE R EREE

£4

|_E

Arial BIEIRRIEEEEIE
S
i 3 =05 B00" GAMMAINY(DS AT 2)
A B C D E F
1 | 2862978 2.400025[ 1522 28]
2|
3

The gamma prior with parameters a = 2.863 and b = 1522.46 will have
(approximately) a probability of 50% of A being below 1/600 = .001667 and a

probability of 95% of A being below 1/250 = .004. This can be checked by

typing

=GAMMDIST(.001667,2.863,(1/1522.46), TRUE)

and

=GAMMDIST(.004,2.863,(1/1522.46), TRUE)

as described when gamma EX CEL functions were introduced in Section 1.

This example will be continued in_Section 3, in which the Bayesian test time
needed to confirm a 500 hour MTBF at 80% confidence will be derived.
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8.3. Reliability Data Collection
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8. Assessing Product Reliability

8.3.Reliability Data Collection

In order to assess or improve reliability, it isusually necessary to have
failure data. Failure data can be obtained from field studies of system
performance or from planned reliability tests, sometimes called Life
Tests. This section focuses on how to plan reliability tests. Theaimisto
answer gquestions such as: how long should you test, what sample size

do you need and what test conditions or stresses need to be run?

Detailed The section detailed outline follows.

contents of
Section 8.3

3. Reliability Data Collection

1. How do you plan ardliability assessment test?

1.

o~ 0N
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Exponentia life distribution (or HPP model) tests

Lognormal or Weibull tests

Reliability growth tests (Duane model)
Accelerated life tests
Bayesian gamma prior model tests
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8.3.1. How do you plan a reliability assessment test?
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8. Assessing Product Reliability
8.3. Rdiahility Data Collection

8.3.1.How do you plan a reliability
assessment test?

ThePlanfor  Planning areliability test means:

arelia(tj)ility « How long should you test?
\t/(\?isttheg S « How many units have to be put on test?
detailed o For repairable systems, thisis often limited to 1.
description « If acceleration modeling is part of the experimental plan
of the . o What combination of stresses and how many experimental
mechanics cells?
of the test : .
and starts 0 How many units go in each cell?
with stating The answers to these questions depend on:
your o What models are you assuming?
asi';'mﬁt' ons « What decisions or conclusions do you want to make after running
and wnat the test and analyzing the data?
you want to . . : .
discover or o What risks are you willing to take of making wrong decisions or
prove conclusions?
It is not always possible, or practical, to completely answer al of these
questions for every model we might want to use. This section looks at
answers, or guidelines, for the following models:
« exponential or HPP Model
« Weibull or lognormal model
o Duane or NHPP Power Law model
« acceleration models
« Bayesian gamma prior model
MNIST
0 TOOLS & AIDS SEARCH BACK MNEXT
SEMATECH [HOME [ [ I |
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8.3.1.1. Exponential life distribution (or HPP model) tests
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8. Assessing Product Reliability

8.3. Reliahility Data Collection

8.3.1. How do you plan areliability assessment test?

8.3.1.1. Exponential life distribution (or HPP
model) tests

Using an
exponential
(or HPP)
model to test
whether a
system
meets its
MTBF
requirement
IS common
in industry

Exponential tests are common in industry for verifying that tools,
systems or equipment are meeting their reliability requirements for
Mean Time Between Failure (MTBF). The assumption is that the system
has a constant failure (or repair) rate, which is the reciprocal of the
MTBF. The waiting time between failures follows the exponential
distribution model.

A typical test situation might be: a new complex piece of equipment or
tool isinstalled in afactory and monitored closely for a period of several
weeks to several months. If it has no more than a pre-specified number
of failures during that period, the equipment "passes’ itsreliability
acceptance test.

Thiskind of reliability test is often called aQualification Test or a
Product Reliability Acceptance Test (PRAT). Contractual penalties
may be invoked if the equipment fails the test. Everything is pegged to
meeting a customer MTBF requirement at a specified confidence level.

How Long Must You Test A Piece of Equipment or a System In
order to Assure a Specified MTBF at a Given Confidence?

Y ou start with agiven MTBF objective, say M, and a confidence level,

say 100 x (1-¢). You need one more piece of information to determine
the test length: how many fails do you want to allow and still "pass’ the
equipment? The more fails allowed, the longer the test required.
However, alonger test allowing more failures has the desirable feature
of making it less likely a good piece of equipment will be rejected
because of random "bad luck™" during the test period.

The recommended procedure is to iterate on r = the number of allowable
failsuntil alarger r would require an unacceptabl e test length. For any
choice of r, the corresponding test length is quickly calculated by
multiplying M (the objective) by the factor in the table below
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8.3.1.1. Exponential life distribution (or HPP model) tests

corresponding to the r-th row and the desired confidence level column.

For example, to confirm a 200-hour MTBF objective at 90%
confidence, allowing up to 4 failures on the test, the test length must be
200 x 7.99 = 1598 hours. If thisis unacceptably long, try allowing only
3failsfor atest length of 200 x 6.68 = 1336 hours. The shortest test
would allow no fails and last 200 x 2.3 = 460 hours. All these tests
guarantee a 200-hour MTBF at 90% confidence, when the equipment
passes. However, the shorter test are much less "fair” to the supplier in
that they have alarge chance of failing a marginally acceptable piece of

equipment.

Usethe Test Test Length Guide Table

length Table

to determine NUI\C/)IEER

th;\;v long to FAILURES FACTOR FOR GIVEN CONFIDENCE LEVELS

ALLOWED

r 50% 60% 75% 80% 90% 95%
0 .693 916 1.39 1.61 2.30 3.00
1 1.68 2.02 2.69 2.99 3.89 4.74
2 2.67 3.11 3.92 4.28 5.32 6.30
3 3.67 4.18 511 5.52 6.68 7.75
4 4.67 5.24 6.27 6.72 7.99 9.15
5 5.67 6.29 7.42 7.90 9.28 10.51
6 6.67 7.35 8.56 9.07 10.53 11.84
7 7.67 8.38 9.68 10.23 11.77 13.15
8 8.67 9.43 10.80 11.38 13.00 14.43
9 9.67 10.48 11.91 12.52 14.21 15.70
10 10.67 11.52 13.02 13.65 15.40 16.96
15 15.67 16.69 18.48 1923 2129 2310
20 20.68 21.84 23.88 24.73 27.05 29.06

The formulato calculate the factorsin thetableis:

2 - 2 -
FAC = 5x 5 ar 41y With X5 50p 41y denoting the upper
100%(1-ex) percentile of the chu-square distribution
with 2(r+1) degrees of freedom

and a Dataplot expression to calculate test length factorsis

http://www.itl.nist.gov/div898/handbook/apr/section3/apr311.htm (2 of 3) [5/1/2006 10:42:16 AM]



Dataplot
expression
for
obtaining
same factors
asin Table

Shorten
required test
times by
testing more
than 1
system
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8.3.1.1. Exponential life distribution (or HPP model) tests

LET FAC = .5*CHSPPF([1- == ],[2* (r+1)])
The equivalent EXCEL expression for FAC is

= 5% CHIINV(1- ¢z, 2 (r+1))).

Example: A new factory tool must meet a 400-hour MTBF requirement
at 80% confidence. Y ou have up to two months of 3-shift operation to
decide whether the tool is acceptable. What is a good test plan?

Two months of around-the-clock operation, with some time off for
maintenance and repairs, amounts to a maximum of about 1300 hours.
The 80% confidence factor for r = 11s2.99, so atest of 400 x 2.99 =
about 1200 hours (with up to 1 fail allowed) is the best that can be done.

NOTE: Exponential test times can be shortened significantly if several
similar tools or systems can be put on test at the same time. Test time
means the same as "tool hours' and 1 tool operating for 1000 hoursis
equivalent (as far as the exponential model is concerned) to 2 tools
operating for 500 hours each, or 10 tools operating for 100 hours each.
Just count all the fails from all the tools and the sum of the test hours
from al thetools.
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8. Assessing Product Reliability

8.3. Reliahility Data Collection

8.3.1. How do you plan areliability assessment test?

8.3.1.2.Lognormal or Weibull tests

Planning
reliability tests
for
distributions
other than the
exponential is
difficult and
involves a lot
of guesswork

Planning areliability test is not simple and straightforward when the
assumed model islognormal or Weibull. Since these models have two
parameters, no estimates are possible without at |east two test failures,
and good estimates require considerably more than that. Because of
censoring, without a good guess ahead of time at what the unknown
parameters are, any test plan may fail.

However, it is often possible to make a good guess ahead of time
about at least one of the unknown parameters - typically the "shape™

parameter (7 for thelognormal or / for the Weibull). With one
parameter assumed known, test plans can be derived that assure the
reliability or failure rate of the product tested will be acceptable.

L ognormal Case (shape parameter known): The lognorma model
is used for many microel ectronic wear-out failure mechanisms, such
as electromigration. As a production monitor, samples of

microel ectronic chips taken randomly from production lots might be
tested at levels of voltage and temperature that are high enough to
significantly accelerate the occurrence of electromigration failures.
Acceleration factors are known from previous testing and range from
several hundred to several thousand.
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8.3.1.2. Lognormal or Weibull tests

Lognormal test  The goal isto construct atest plan (put n units on stresstest for T

plans,
assuming
sigma and the
acceleration
factor are
known

hours and accept the lot if no more than r failures occur). The
following assumptions are made:

o Thelifedistribution model islognormal

o Sigma= 7 Is known from past testing and does not vary

appreciably from lot to lot
« Lot reliability varies because Tsy's (the lognormal median or
50th percentile) differ from lot to lot

« The acceleration factor from high stressto use stressisa
known quantity "A"

« A stresstimeof T hoursis practical as aline monitor

« A nominal use Tgg of T, (combined with fT'?) produces an

acceptable use CDF (or usereliability function). Thisis
equivalent to specifying an acceptable use CDF at, say,
100,000 hoursto be a given value py and calculating T, via:

P
T =100,000e "% P

where (! istheinverse of the standard normal distribution
« An unacceptable use CDF of p, leadsto a"bad" use Tgy of T,
using the same equation as above with p, replaced by p;
The acceleration factor A is used to calculate a"good" or acceptable
proportion of failures p, at stress and a"bad" or unacceptable
proportion of fails py:

In(AT/T,) Dy =@ In{AT/Ty)
&7 a7

paij

where I isthe standard normal CDF. This reduces the reliability
problem to awell-known Lot Acceptance Sampling Plan (LASP)

problem, which was covered in Chapter 6.

If the sample size required to distinguish between p, and py, turns out

to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
eguations give a methodology for planning ongoing reliability tests
under alognormal model assumption.
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8.3.1.2. Lognormal or Weibull tests

Weibull test
plans,
assuming
gamma and
the
acceleration.
factor are
known

Weibull Case (shape parameter known): The assumptions and
calculations are similar to those made for the lognormal:

« Thelifedistribution model is Weibull
o Gamma= .. isknown from past testing and does not vary

appreciably from lot to lot
« Lot reliability varies because ‘s (the Weibull characteristic
life or 62.3 percentile) differ from lot to lot

o The acceleration factor from high stressto use stressis a
known quantity "A"

o A stresstimeof T hoursis practical as aline monitor

« A nominal use ** of ¢, (combined with }7;) produces an

acceptable use CDF (or usereliability function). Thisis
equivalent to specifying an acceptable use CDF at, say,

100,000 hours to be a given value py and calculating
AT

e, =
1 1

|~ In(1 = po) 5

» 1
]

« An unacceptable use CDF of p; leadsto a"bad" use® of

using the same equation as above with p, replaced by p;
The acceleration factor A is used next to calculate a"good" or
acceptable proportion of failures p, at stress and a"bad" or
unacceptable proportion of failures py:

- . - - .
e / o

y =] T 9, =] —p 50
Pa = - Ph =

This reduces the reliability problem to a Lot Acceptance Sampling
Plan (LASP) problem, which was covered in Chapter 6.

If the sample size required to distinguish between p, and py, turns out

to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
eguations give a methodology for planning ongoing reliability tests
under aWelbull model assumption.

Planning Teststo Estimate Both Weibull or Both L ognor mal
Parameters
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8.3.1.2. Lognormal or Weibull tests

Rules-of-thumb  All that can be said here are some general rules-of-thumb:

for general
lognormal or
Weibull life
test planning

NIST
SEMATECH

1.

I HOME

If you can observe at least 10 exact times of failure, estimates
are usually reasonable - below 10 failures the critical shape
parameter may be hard to estimate accurately. Below 5 failures,
estimates are often very inaccurate.

With readout data, even with more than 10 total failures, you
need failures in three or more readout intervals for accurate
estimates.

When guessing how many units to put on test and for how
long, try various reasonable combinations of distribution
parameters to see if the corresponding calculated proportion of
failures expected during the test, multiplied by the sample size,
gives areasonable number of failures.

As an dlternative to the last rule, smulate test data from
reasonable combinations of distribution parameters and see if
your estimates from the ssmulated data are close to the
parameters used in the simulation. If atest plan doesn't work
well with ssmulated data, it is not likely to work well with real
data.

[TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/apr/section3/apr312.htm (4 of 4) [5/1/2006 10:42:17 AM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.3.1.3. Reliability growth (Duane model)

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

8. Assessing Product Reliability
8.3. Rdiahility Data Collection
8.3.1. How do you plan areliability assessment test?

8.3.1.3. Reliability growth (Duane model)

Guidelines A reliability improvement test usually takes a large resource

for planning  commitment, so it isimportant to have away of estimating how long a

howlongto  test will be required. The following procedure gives a starting point for

runa determining a test time:

reliability P

growth test 1. Guessastarting valuefor + , the growth slope. Some guidelines
were previously discussed. Pick something closeto 0.3 for a
conservative estimate (perhaps a new cross-functional team will
be working on the improvement test or the system to be improved
has many new parts with possibly unknown failure mechanisms),
or close to 0.5 for amore optimistic estimate.

2. Use current data and engineering estimatesto arrive a a
consensus for what the starting MTBF for the system is. Call this
M;.

3. Let Mt bethe target MTBF (the customer requirement). Then the

Improvement needed on the test is given by
IM = MT/M]_

4. A first pass estimate of the test time needed is

T=ns1'F

This estimate comes from using the starting MTBF of M, asthe MTBF
after 1 hour on test and using the fact that the improvement from 1 hour

to T hoursisjust T8
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8.3.1.3. Reliability growth (Duane model)

Make sure
test time
makes
engineering
sense

Iterative
simulation is
an aid for
test

planning

NIST
SEMATECH

The reason the aboveisjust afirst pass estimateisit will give

unrealistic (too short) test timeswhen ahigh /' is assumed. A very
short reliability improvement test makes little sense because a minimal
number of failures must be observed before the improvement team can
determine design and parts changes that will "grow" reliability. And it
takes time to implement these changes and observe an improved repair
rate.

Simulation methods can also be used to see if a planned test islikely to
generate data that will demonstrate an assumed growth rate.
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8.3.1.4. Accelerated life tests

Accelerated
testing is
needed when
testing even
large sample
Sizes at use
stress would
yield few or
no failures
within a
reasonable
time

Test
planning
means
picking
stress levels
and sample
sizesand
test timesto
produce
enough data
to fit models
and make
projections

Accelerated life tests are component life tests with components operated
at high stresses and failure data observed. While high stress testing can
be performed for the sole purpose of seeing where and how failures
occur and using that information to improve component designs or
make better component selections, we will focusin this section on
accelerated life testing for the following two purposes:

1. To study how failure is accelerated by stress and fit an
acceleration model to data from multiple stress cells

2. To obtain enough failure data at high stress to accurately project
(extrapolate) what the CDF at use will be.

If we already know the acceleration model (or the acceleration factor to
typical use conditions from high stress test conditions), then the
methods described two pages ago can be used. We assume, therefore,

that the acceleration model is not known in advance.

Test planning and operation for a (multiple) stress cell life test
experiment consists of the following:

« Pick several combinations of the relevant stresses (the stresses
that accelerate the failure mechanism under investigation). Each
combination isa"stress cell". Note that you are planning for only
one mechanism of failure at atime. Failures on test due to any
other mechanism will be considered censored run times.

« Make sure stress levels used are not too high - to the point where
new failure mechanisms that would never occur at use stress are
introduced. Picking a maximum allowable stress level requires
experience and/or good engineering judgment.

« Put random samples of components in each stress cell and run the
componentsin each cell for fixed (but possibly different) lengths
of time.

o Gather the failure datafrom each cell and use the datato fit an
acceleration model and alife distribution model and use these
models to project reliability at use stress conditions.
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8.3.1.4. Accelerated life tests

Test planning would be similar to topics already covered in the chapters
that discussed modeling and experimental design except for one
important point. When you test components in a stress cell for afixed
length test, it istypical that some (or possibly many) of the components
end the test without failing. Thisis the censoring problem, and it greatly
complicates experimental design to the point at which it becomes almost
as much of an art (based on engineering judgment) as a statistical
science.

An example will help illustrate the design issues. Assume a metal
migration failure mode is believed to follow the 2-stress temperature

voltage model given by

C
Tl

{po= Aty P

Normal use conditions are 4 volts and 25 degrees Celsius, and the high
stress levels under consideration are 6, 8,12 volts and 85°, 105° and
1250, |t probably would be a waste of resources to test at (6v, 85°), or

even possibly (8v, 859) or (6v,105°) since these cells are not likely to
have enough stress accel eration to yield a reasonable number of failures
within typical test times.

If you write al the 9 possible stress cell combinations in a 3x3 matrix
with voltage increasing by rows and temperature increasing by columns,
the result would look like the matrix below:

Matrix Leading to" Backward L Design"

6v, 850 6v, 1050 6v, 1250
8v, 850 8v,105° 8v,1250
12v,850 12v,105° 12v,125°
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"Backwards  The combinationsin bold are the most likely design choices covering
L" designs the full range of both stresses, but still hopefully having enough
arecommon  acceleration to produce failures. Thisisthe so-called " backwardsL"

in design commonly used for accel eration modeling experiments.
accelerated . : : _

- - Note: It is good design practice to put more of your test unitsin the
life testing. :

Put more lower stress cells, to make up for the fact that these cells will have a

experimental smaller proportion of units failing.

unitsin
lower stress
cells.

Sometimes Design by Simulation:

simulationis . :

the best way A lengthy, but better way to choose atest matrix is the following:

to learn « Pick an acceleration model and alife distribution model (as
whether a usual).

test plan has « Guess at the shape parameter value of the life distribution model
a chl?nce of based on literature studies or earlier experiments. The shape
working

parameter should remain the same for al stress cells. Choose a
scale parameter value at use so that the use stress CDF exactly
meets requirements (i.e., for the lognormal, pick ause Tgj that
givesthe desired use reliability - for aWeibull model choice, do
the same for the characteristic life parameter).

. Guess at the acceleration model parameters values (£ H and 4,

for the 2-stress model shown above). Again, use whatever isin
the literature for similar failure mechanisms or data from earlier
experiments).

« Calculate acceleration factors from any proposed test cellsto use
stress and divide the use scale parameter by these acceleration
factorsto obtain "trial" cell scale parameters.

« Simulate cell datafor each proposed stress cell using the derived
cell scale parameters and the guessed shape parameter.

» Check that every proposed cell has sufficient failuresto give
good estimates.

« Adjust the choice of stress cells and the sample size allocations
until you are satisfied that, if everything goes as expected, the
experiment will yield enough data to provide good estimates of
the model parameters.
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After you Optimal Designs:
g(‘ja\l/kaence Recent work on designing accelerated life tests has shown it is possible,
estimates, it for agiven choice of models and assumed values of the unknown
issometimes  Parameters, to construct an optimal design (one which will have the best
possible to chance of providing good sample estimates of the model parameters).
construct an 1 hese optimal designstypically select stresslevels asfar apart as
optimal possible and heavily weight the allocation of sample unitsto the lower
experimental stress cells. However, unless the experimenter can find software that
design - but incorporates these optimal methods for his or her particular choice of
softwarefor  Models, the methods described above are the most practical way of
thisis designing acceleration experiments.
scarce
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8.3.1.5.Bayesian gamma prior model

How to Review Bayesian basics and assumptions, if needed. We start at the point
plan a when gamma prior parameters a and b have already been determined.
Bayesian Assume we have a given MTBF objective, say M, and a desired confidence
test to level, say 100x (1-x). We want to confirm the system will have at least an
;c/);grrnm a MTBF of at least M at the 100x(1- ¢ ) confidence level. Asin the section

(sits on classical (HPP) test plans, we pick a number of failures, r, that we can

MTBE allow on the test. We need atest time T such that we can observeup tor
failures and still "pass’ the test. If the test time istoo long (or too short),
we can iterate with a different choice of r.

objective

When the test ends, the posterior gamma distribution will have (worst case
- assuming exactly r failures) new parameters of

a=a+rb=b+T
and passing the test means that the failure rate ;. . the upper 100x(1- rz)
"1 |

percentile for the posterior gamma, has to equal the target failure rate /M.
But this percentileis, by definition, G-1(1- ¢ ;a',b'), with G-1 denoting the
inverse of the gamma distribution with parameters a’, b'. We can find the
vaue of T that satisfies G1 (1- ¢ ;a',b") = 1/M by trial and error, or by
using "Goal Seek" in EXCEL. However, based on the properties of the
gammadistribution, it turns out that we can calculate T directly by using

T=5Mx Gl(1-;2a,5) -b
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8.3.1.5. Bayesian gamma prior model

Excel will Solving For T = Bayesian Test Time Using EXCEL or Dataplot
easily do : . . : :

the y The EXCEL expression for the required Bayesian test time to confirm a
required goal of M at 100x(1-a)% confidence, allowing r failures and assuming

gamma prior parametersof aand b is
= .5*M*GAMMAINV( (1-),((a+r)),2) - b
and the equivalent Dataplot expression is

LET BAYESTIME = M* GAMPPF((1- ¢tz ),(atr)) - b.
Special Case: ThePrior Hasa=1 (The" Weak" Prior)

calculations

When the Thereisavery ssmple way to calculate the required Bayesian test time,
prior isa when the prior isaweak prior with a = 1. Just use the Test Length Guide

weak prior  Tableto calculate the classical test time. Call this T,. The Bayesian test
Witha=1,  {imeTisjust T, minusthe prior parameter b (i.e., T= T, - b). If the b

tBh:yesi an parameter was set equal to (In 2) x MTBFgq (with MTBF5 the consensus
test is choice for an "even money" MTBF), then
a|WayS T= TC - (In 2) X MTBF50
shorter This shows that when aweak prior is used, the Bayesian test timeis always
than the less than the corresponding classical test time. That is why this prior isalso
tc(:tﬁcal known asafriendly prior.
Note: In general, Bayesian test times can be shorter, or longer, than the
corresponding classical test times, depending on the choice of prior
parameters. However, the Bayesian time will always be shorter when the
prior parameter aislessthan, or equal to, 1.
Example: Calculating a Bayesian Test Time
EXCEL A new piece of equipment hasto meet aMTBF requirement of 500 hours
example at 80% confidence. A group of engineers decide to use their collective

experience to determine a Bayesian gamma prior using the 50/95 method
described in Section 2. They think 600 hoursisalikely MTBF value and

they are very confident that the MTBF will exceed 250. Following the
example in Section 2, they determine that the gamma prior parameters are

a=2.863 and b = 1522.46.

Now they want to determine an appropriate test time so that they can
confirm a MTBF of 500 with at least 80% confidence, provided they have
no more than 2 failures.

Using an EXCEL spreadsheet, type the expression
= .5*500* GAMMAINV (.8,((a+r)),2) - 1522.46
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and the required test time of 1756 hours will appear (as shown below).
% Microsoft Excel - Bookl
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Using Datapl ot, the same result would be obtained from
LET BAYESTIME = 500* GAMPPF(.8,4.863) - 1522.46

To compare this result to the classical test time required, usethe Test
Length Guide Table. The table factor is 4.28, so the test time needed is 500
X 4.28 = 2140 hours for anon-Bayesian test. The Bayesian test saves about
384 hours, or an 18% savings. If the test isrun for 1756 hours, with no

more than 2 failures, then an MTBF of at |least 500 hours has been
confirmed at 80% confidence.

If, instead, the engineers had decided to use aweak prior with an MTBF 5,
of 600, the required test time would have been

2140 - 600 x In 2 = 1724 hours
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8. Assessing Product Reliability

8.4.Reliability Data Analysis

After you have obtained component or system reliability data, how do
you fit life distribution models, reliability growth models, or
acceleration models? How do you estimate failure rates or MTBF's and
project component or system reliability at use conditions? This section
answers these kinds of questions.

Detailed The detailed outline for section 4 follows.
outline for . _
Section 4 4. Reliability Data Analysis

. How do you estimate life distribution parameters from censored

data?
1. Graphical estimation
2. Maximum Likelihood Estimation (MLE)
3. A Welbull MLE example

. How do you fit an acceleration model ?

1. Graphical estimation
2. Maximum likelihood
3. Fitting models using degradation data instead of failures

. How do you project reliability at use conditions?

. How do you compare reliability between two or more

popul ations?

. How do you fit system repair rate model s?

1. Constant repair rate (HPP/Exponential) model
2. Power law (Duane) model

3. Exponentia law model

. How do you estimate reliability using the Bayesian gamma prior

model ?
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8.4.1.How do you estimate life distribution
parameters from censored data?

Graphical Two widely used general methods will be described in this section:
estimation « Graphical estimation
methods . . .
(aided by o Maximum Likelihood Estimation (MLE)
computer Recommendation On Which Method to Use
linefits) are _ I N ,
easy and Maxi mum likelihood esti mation _(except when _the failure o_Iata arevery
quick sparse - i.e., only afew failures) isamore precise and flexible method.
However, with censored data, the method of maximum likelihood
Maximum estimation requires special computer programs for distributions other
likelihood than the exponential. Thisis no longer an obstacle since, in recent years,
methodsare  many statistical software packages have added reliability platforms that
usually will calculate MLE's and most of these packages will estimate
more acceleration model parameters and give confidence bounds, aswell. It is
precise- but  even relatively easy to write spreadsheet 1og likelihood formulas and use
requi rle EXCEL's built in SOLVER routine to quickly calculate MLE's.
z?t(\:,:,gre If important business decisions are based on reliability projections made
from life test data and acceleration modeling, then it pays to obtain
state-of-the art MLE reliability software. Otherwise, for monitoring and
tracking reliability, estimation methods based on computer-augmented
graphical procedures will often suffice.
NIST : .
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8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.1. Graphical estimation

Every line Once you have calculated plotting positions from your failure data, and
on N put the points on the appropriate graph paper for your chosen model,
probability parameter estimation follows easily. But along with the mechanics of
Paper graphical estimation, be aware of both the advantages and the

uniquely disad . N

dentifies isadvantages of graphical estimation methods.

distribution

parameters

Most Graphical Estimation Mechanics:

probability . : : :
papers have If you draw ali n_e_through the points, and the paper is comme_rC|aI ly
simple designed probability paper, there are usually ssmple rulesto find
procedures estimates of the slope (or shape parameter) and the scale parameter. On
that go from lognormal paper with time on the x-axis and cum percent on the y-axis,
alinetothe  draw horizontal linesfrom the 34th and the 50th percentiles across to
underlying the line, and drop vertical lines to the time axis from these intersection
distribution points. The time corresponding to the 50th percentile is the Tg estimate.
parameter Divide Tgq by the time corresponding to the 34th percentile (thisis
estimates called Ty4). The natural logarithm of that ratio is the estimate of sigma,

or thedopeof theline («7 =1n (Tgg/ Tay).

On commercial Weibull probability paper there is often a horizontal line
through the 62.3 percentile point. That estimation line intersects the line
through the points at atime that is the estimate of the characteristic life

parameter z . In order to estimate the line slope (or the shape parameter

/"), some papers have a special point on them called an estimation
point. You drop aline from the estimation point perpendicular to the
fitted line and look at where it passes through a special estimation

scale. The estimate of / isread off the estimation scale where the line
Crossesit.

Other papers may have variations on the methods described above.
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Perhaps the
wor st
drawback of
graphical
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you cannot
get
legitimate
confidence
intervals for
the
estimates

8.4.1.1. Graphical estimation

To remove the subjectivity of drawing aline through the points, aleast
squares (regression) fit can be performed using the equations described
In the section on how special papers work. An example of thisfor the
Welbull, using the Dataplot FIT program, was aso shown in that
section. A SAS IMP™ example of aWelbull plot for the same datais

shown later in this section.

Finally, if you have exact times and complete samples (no censoring),
Dataplot has built-in Probability Plotting functions and built-in Weibull

paper - examples were shown in the sections on the various life
distribution models.

Advantages of Graphical M ethods of Estimation:

« Graphical methods are quick and easy to use and make visual
sense

« Calculations can be done with little or no special software needed.

« Visual test of modd (i.e., how well the pointsline up) isan
additional benefit

Disadvantages of Graphical M ethods of Estimation

The statistical properties of graphical estimates (i.e., how precise are
they on the average) are not good
« they are biased
« even with large samples, they do not become minimum variance
(i.e., most precise) estimates
« graphical methods do not give confidence intervals for the

parameters (intervals generated by aregression program for this
kind of data are incorrect)

« Formal statistical tests about model fit or parameter values cannot
be performed with graphical methods

Aswe will seein the next section, Maximum Likelihood Estimates

overcome all these disadvantages - at least for reliability data setswith a
reasonably large number of failures - at a cost of losing all the
advantages listed above for graphical estimation.
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8.4.1.2.Maximum likelihood estimation

Thereis Maximum likelihood estimation begins with writing a mathematical
nothing expression known as the Likelihood Function of the sample data.
visual about  Loosely speaking, the likelihood of a set of datais the probability of
the obtaining that particular set of data, given the chosen probability
maxi mum distribution model. This expression contains the unknown model
likelihood parameters. The values of these parameters that maximize the sample

method - but  likelihood are known as the Maximum Likelihood Estimatesor MLE's.
itisa _ - . _ R

power ful Maximum likelihood estimation is atotally analytic maximization
method and procedure. It appliesto every form of censored or multicensored data,

and it is even possible to use the technique across several stress cells and

at least for : : ; .
large estimate accel eration model parameters at the sametime aslife
samples distribution parameters. Moreover, MLE's and Likelihood Functions
very pr écise generaly have very desirable large sample properties:
« they become unbiased minimum variance estimators as the
sample size increases
« they have approximate normal distributions and approximate
sample variances that can be calculated and used to generate
confidence bounds
« likelihood functions can be used to test hypotheses about models
and parameters
With small There are only two drawbacks to MLE's, but they are important ones:

samples, « With small numbers of failures (less than 5, and sometimes less

MLE's may than 10 is small), MLE's can be heavily biased and the large

not t_)e very sample optimality properties do not apply

Pr:aeu:e?]nd Calculating MLE's often requires specialized software for solving
y t complex non-linear equations. Thisisless of a problem astime

ﬁﬁgﬁ; tel?&s goes by, as more statistical packages are upgrading to contain

above or MLE analysis capability every year.

below the Additional information about maximum likelihood estimatation can be
data points found in Chapter 1.
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8.4.1.2. Maximum likelihood estimation

Likelihood
equation for
censored
data

Likelihood Function Examplesfor Reliability Data:

Let f(t) be the PDF and F(t) the CDF for the chosen life distribution
model. Note that these are functions of t and the unknown parameters of
the model. Thelikelihood function for Type | Censored datais:

;o bt
L=C || /) (1-F()

with C denoting a constant that plays no role when solving for the
MLE's. Note that with no censoring, the likelihood reducesto just the
product of the densities, each evaluated at afailure time. For Type ||

Censored Data, just replace T above by the random end of test timet,.

The likelihood function for readout data is:

I.; II( h . . . . AW 4 x.l- M ""'
[.=C [ [r,mff{'f_, -F(T)) |(1-F(T)) &
T |

A

with F(Tp) defined to be O.

In general, any multicensored data set likelihood will be a constant
times a product of terms, one for each unit in the sample, that ook like
either f(t;), [F(T;)-F(T;.)], or [1-F(t;)], depending on whether the unit
was an exact time failure at time t;, failed between two readouts T;_; and
T;, or survived to time t; and was not observed any longer.

The general mathematical technique for solving for MLE's involves
setting partial derivatives of In L (the derivatives are taken with respect
to the unknown parameters) equal to zero and solving the resulting
(usually non-linear) equations. The equation for the exponential model
can easily be solved, however.
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MLE for the
exponential
model
parameter

2 turnsout

to be just
(total # of
failures)
divided by
(total unit
test time)

NIST

SEMATECH

MLE'sfor the Exponential Model (Typel Censoring):

I
A%

L=Cire S (E"“”'”T)

InL=InC+rind - Aii}. —Aln-nr)T
=1

&ln L _r
oA

—St—-(-r)T=0
7=l

¥

i+ (n—r)T
7=l

Note: The MLE of the failure rate (or repair rate) in the exponential case
turns out to be the total number of failures observed divided by the total
unit test time. For the MLE of the MTBF, take the reciprocal of this or
use the total unit test hours divided by the total observed failures.

There are examples of Weibull and lognormal MLE analysis, using SAS
JMP™ software, later in this section.
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8.4.1.3. A Weibull maximum likelihood estimation example
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.3. A Weibull maximum likelihood estimation

example
Reliability ~ SASJMPTM Example
analysis . . i . -
with a SAS JMP software has excellent survival analysis (i.e., reliability analysis) capabilities,
popular incorporating both graphical plotting and maximum likelihood estimation and covering
Statistical the exponential, Weibull, lognormal and extreme value distribution models.
software Use of IMP (Release 3) for plotting Weibull censored data and estimating parameters
package will beillustrated using data from a previous example.
Sepsina Weibull Data Example
Weibull : :
analysis Failure times were 55, 187, 216, 240, 244, 335, 361, 373, 375, and 386 hours, and 10
using IMP unfailed units were removed from test at 500 hours. The stepsin creating a IMP
software worksheet and analyzing the data are as follows:

1. Set up three columns, one for the failure and censoring times ("Time"), another to
indicate whether thetimeis afailure or a censoring time (*Cens') and the third column
to show how many units failed or were censored at that time ("Freq"). Fill in the 11 times
above, using "0" in Censto indicate afailure and "1" in Cens to indicate a censoring
time. The spreadsheet will ook as follows:
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8.4.1.3. A Weibull maximum likelihood estimation example

¥ JMP - [mleex]

File Edit Tables ERows Cols Analyze Graph Tools Window Help

TR QR O@ 0

11 Rowws Time Cens Fred

a3
187
216
240
244
333
361
373
373
356
S00

= o W o~ M h L k=
= o oo oo o o o o o
O = A el e s s a s

—_— —
—

Y ou can obtain a copy of this IMP worksheet by clicking here mleex.jmp . If your

browser is configured to bring up JIMP automatically, you can try out the example as you
read about it.

2. Click on Analyze, choose "Survival" and then choose "Kaplan - Meier Method". Note:
Some software packages (and other releases of JIMP) might use the name "Product Limit
Method" or "Product Limit Survival Estimates" instead of the equivalent name
"Kaplan-Meier".

3. In the box that appears, select the columns from mleex that correspond to "Time",
"Censor" and "Freq", put them in the corresponding slots on the right (see below) and
click "OK".
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8.4.1.3. A Weibull maximum likelihood estimation example

4+ JMP - [mleex]

Fie Edit Tables Eows Cols BEGG-CE Graph Tools Window Help

Rl OE O O

11 Roves Titme Cens Fred

a5
187
216
240
244
335
361
373

9 374
10 386
11 a00

o~ mh B k=

= oo o oo o oo oo
—
o B B " ") U QU T T T

%* Kaplan-Meier (Product Limit) Survival Curves

with features for testing across groups, Weibull, LogNormal, and
Exponential plots and estimates, and competing risks.

Columns from mleex

T Time o o time s | [Time
[CiCens > Lensor >
DFreq Cens
> Grouping >
> Freq>

[ Remove |

Cancel | Help

4. Click "OK" and the analysis results appear. Y ou may have to use the "check mark" tab
on the lower left to select Weibull Plot (other choices are Lognormal and Exponential).

Y ou may also have to open the tab next to the words "Weibull Plot" and select "Weibull
Estimates'. The results are shown below.
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4» JMP - [mleex: Survival]
File Edit Tables Eows Cols Analyze Graph Tools Window Help

Procuct-Limit Suewival Estimates
Time Yariahle:  Time
Cenzoring Yariakle: Cens

Survival Plot

Weibull Plot
05+ o]
1 =
| ¥
-1.0 £ =
= - P
l e
@ -1 .54 .i!' a4
El i "
= ¢
=20 J
[m] 1,
- . o4 A
A
25 L)
_3|:| E3 i | 'II !:|F|—
10 100 1000
Time
[E:-:treme-value Parameter Estimates ]
Lambida Ceta L95 Lambda 95 Lambda  L95 Detta 1195 Detta M Failed
EB.40639 0579500 B.03126 T2 0345812 110090 10
E'Neihull Parameter Estimates ]
zame az Extreme-Yalue with Alpha=expiLambda), Beta=1Delta
Alpha Bets L95 Alpha 95 Alpha  L95Bets U35 Beta N Failed
BOE.005  1.72563 437579 111575 04903350 259342 10

Ty

Note: IMP usesthe parameter & for the Weibull characteristic life (as does Dataplot),

and the parameter /* for the shape (Dataplot uses ). The Extreme Value distribution
parameter estimates are for the distribution of "In time to faill" and have the relationship

A=Inc. A=1/f

(Dataplot uses gomstead of A and & instead of A)

5. Thereis an alternate way to obtain some of the same results, which can aso be used to
fit models when there are additional "effects" such as temperature differences or vintage
or plant of manufacturing differences. Instead of clicking "Kaplan - Meier Method" in
step 2, chose "Parametric Model" after selecting "Survival" from the "Analysis' choices.
The screen below appears. Repeat step 3 and make sure "Weibull" appears as the "Get
Model" choice. In this example there are no other effectsto "Add" (the acceleration

model example later on will illustrate how to add a temperature effect). Click "Run
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Model" to obtain the results below. Thistime, you need to use the check symbol tab to
obtain confidence limits. Only the Extreme Va ue distribution parameter estimates are

displayed.
3 JVIP

File Edit Tahles Eows Cols Analyze Graph Tools Window Help

# mleex: Survival Model

[T Time = s Time > | [Time =
[CICens
I Freq =l

> Censor > | |ICens

> Freq > Frgq
| Effects In Model

> Add> =
> Cross >
> Nest >
j
Degree: IE_ Hemove
™ No Intercept _G€t Model | Weibull -
Save Model| Help | Close| [ Run Model

mleex: Model Fit

Parametric Survival Fit ;|
Wieibull Distribution [
Cenzoring Yariable: Cens

[inhole Model Test |

Model -LogLikelihood  Chi-Sguare DF  Prob=Chisg
Difference 1 0.0000 n 0.0000
Full 20022968

Reduced 20022965

[F‘arameter Estimates ]

Term Estimate  Std Error Lowwer CL Upper CL
Intercept 64068554 02053295 603125658 70172753
Deta 057949656 0469052 0345612 14008974

o
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Limitations
and a
warning
about the
Likelihood
calculation
in IMP
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SEMATECH

Notes:

1. The built in reliability analysis routine that iscurrently part of IMP only handles exact
time of failure data with possible right censoring. However, the use of templates
(provided later in the Handbook) for either Weibull or lognormal data extends JIMP
analysis capabilities to handle readout (interval) data and any type of censoring or
truncation. Thiswill be described in the acceleration model example later on.

2. The"Model Fit" screen for the Weibull model gives avalue for -Loglikelihood for the
Weibull fit. This should be the negative of the maximized likelihood function. However,
JMP leaves out aterm consisting of the sum of all the natural logarithms of the times of
failuresin the data set. This does not affect the calculation of MLE's or confidence
bounds but can be confusing when comparing results between different software
packages. In the example above, the sum of thelntimesisIin 55+ In 187 + ... +1n 386
= 55.099 and the correct maximum log likelihood is - (20.023 + 55.099) = - 75.122.

3. The omission of the sum of the In times of failluresin the likelihood also occurs when
fitting lognormal and exponential models.

4. Different releases of IMP may, of course, operate somewhat differently. The analysis
shown here used release 3.2.2.

Conclusions

MLE analysisis an accurate and easy way to estimate life distribution parameters,
provided that a good software analysis package is available. The package should also
calculate confidence bounds and loglikelihood values. IMP has this capability, as do
several other commercial statistical analysis packages.
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8.4.2. How do you fit an acceleration model?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.2.How do you fit an acceleration
model?

Acceleration

Aswith estimating life distribution model parameters, there are two

models can genera approaches for estimating acceleration model parameters:

be fit by « Graphical estimation (or computer procedures based on a

elther_ graphical approach)

graphical . . N :

procedures o Maximum Likelihood Estimation (an analytic approach based on

or maximum writing the likelihood of all the data across all the cells,

likelihood incorporating the accel eration model).

methods The same comments and recommendations concerning these methods
still apply. Note that it is even harder, however, to find useful software
programs that will do maximum likelihood estimation across stress cells
and fit and test acceleration models.

Sometimesit  Another promising method of fitting acceleration models is sometimes

Ispossibleto  possible when studying failure mechanisms characterized by a

fit a model stress-induced gradual degradation process that causes the eventual

using failure. This approach fits models based on degradation data and has the

degradation  advantage of not actually needing failures. This overcomes censoring

data limitations by providing measurement data at consecutive time intervals
for every unit in every stress cell.

NIST . :
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8.4.2.1. Graphical estimation
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8.4. Reliability Data Analysis

8.4.2. How do you fit an acceleration model ?

8.4.2.1. Graphical estimation

Estimate
acceleration
model
parameters
by
estimating
cell T50'S
(or «'s)
and then
using
regression
to fit the
model
across the
cells

This section will discuss the following:
1. How tofit an Arrhenius model with graphical estimation

2. Graphical estimation: an Arrhenius model example
3. Fitting more complicated models

How to fit an Arrhenius Model with Graphical Estimation

Graphical methods work best (and are easiest to describe) for a simple one-stress model
like the widely used Arrhenius model

t, = Aexp; A ]

KT

with T denoting temperature measured in degrees Kelvin (273.16 + degrees Celsius) and
k is Boltzmann's constant (8.617 x 102 in eV/°K).

When applying an acceleration model to a distribution of failure times, we interpret the
deterministic model equation to apply at any distribution percentile we want. Thisis
equivalent to setting the life distribution scale parameter equal to the model equation

(Tgq for thelognormal, “* for the Weibull and the MTBF or 1/ 3 for the exponential).
For the lognormal, for example, we have

I, =Aek
. S
InT,, = v=1nd + AH \ f{',"'!_.

This can be wrtien as

. |
Fhx with h =AM and x =
X with & nd X T

So, if werun several stress cells and compute Tsy's for each cell, a plot of the natural log
of these Txy's versus the corresponding 1/KT values should be roughly linear with a slope

V=
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8.4.2.1. Graphical estimation

Arrhenius
model
example

of & H and anintercept of In A. In practice, acomputer fit of aline through these points
istypically used to obtain the Arrhenius model estimates. There are even commercial
Arrhenius graph papers that have atemperature scale in /KT units and a Tgg scalein log

units, but it is easy enough to make the transformations and then use linear or log-linear
papers. Remember that T isin Kelvin in the above equations. For temperature in Celsius,
use the following for L/KT: 11605/(TCELSIUS + 273.16)

An example will illustrate the procedure.

Graphical Estimation: An Arrhenius Model Example:

Component life tests were run at 3 temperatures: 85°C, 105°C and 125°C. The lowest
temperature cell was populated with 100 components; the 105° cell had 50 components
and the highest stress cell had 25 components. All tests were run until either all the units
in the cell had failed or 1000 hours was reached. Acceleration was assumed to follow an
Arrhenius model and the life distribution model for the failure mode was believed to be
lognormal. The normal operating temperature for the componentsis 25°C and it is
desired to project the use CDF at 100,000 hours.

Test results:

Cell 1 (85°C): 5failures at 401, 428, 695, 725 and 738 hours. 95 units were censored at
1000 hours running time.

Cell 2 (105°C): 35 failuresat 171, 187, 189, 266, 275, 285, 301, 302, 305, 316, 317, 324,
349, 350, 386, 405, 480, 493, 530, 534, 536, 567, 589, 598, 599, 614, 620, 650, 668,
685, 718, 795, 854, 917, and 926 hours. 15 units were censored at 1000 hours running
time.

Cdl 3(125°C): 24 failures at 24, 42, 92, 93, 141, 142, 143, 159, 181, 188, 194, 199, 207,
213, 243, 256, 259, 290, 294, 305, 392, 454, 502 and 696. 1 unit was censored at 1000
hours running time.

Failure analysis confirmed that all failures were due to the same failure mechanism (if
any failures due to another mechanism had occurred, they would have been considered
censored run times in the Arrhenius analysis).

Stepsto Fitting the Distribution Model and the Arrhenius M odel:

« Do graphical plots for each cell and estimate Tgy's and sigma's as previously
discussed.

« Put all the plots on the same sheet of graph paper and check whether the lines are
roughly parallel (a necessary consequence of true acceleration).

« If satisfied from the plots that both the lognormal model and the constant sigma
from cell to cell are consistent with the data, plot the cell In Tsg's versus the

11605/(TCELSIUS + 273.16) cell values, check for linearity and fit a straight line
through the points. Since the points have different degrees of precision, because
different numbers of failures went into their calculation, it is recommended that
the number of failuresin each cell be used as weights in aregression program,
when fitting a line through the points.
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« Usethe dope of theline asthe /4 H estimate and calculate the Arrhenius A

constant from the intercept using A = eintercept |

« Estimate the common sigma across all the cells by the weighted average of the

individual cell sigma estimates. Use the number of failuresin acell divided by the
total number of failuresin al cells asthat cellsweight. Thiswill alow cellswith
more failures to play a bigger role in the estimation process.

Datapl ot Dataplot Analysisof Multicell Arrhenius Model Data:

solution for . . : :
Arrhenius After creating text filesDATLTXT, DAT2.TXT and DAT3.TXT of the failure timesfor
moddl the 3 stress cells, enter Datapl ot and execute the following sequence of commands
example (individual cell plots have been skipped):

READ DATL.TXT CELL1
READ DAT2.TXT CELL2
READ DAT3.TXT CELL3

LET Y1=LOG(CELL1)

LET Y2 =LOG(CELL2)

LET Y3=LOG(CELL3)

LET POSL = SEQUENCE 115
LET POS2 = SEQUENCE 11 35
LET POS3 = SEQUENCE 11 24
LET POSL = (POSL -.3)/100.4
LET POS2 = (POS2 -.3)/50.4
LET POS3 = (POS3 -.3)/25.4
LET X1 = NORPPF(POSL)

LET X2 = NORPPF(POS2)

LET X3 = NORPPF(POS3)
TITLE PROBABILITY PLOTS OF THREE TEMPERATURE CELLS
PLOT Y1 X1 AND

PLOT Y2 X2 AND

PLOT Y3 X3

Thiswill produce the following probability plot of all three stress cells on the same

graph.
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FRORAEILITY PFLOTS OF THREE TERMSERRTURE CELLZ

) ,f S

Note that the lines are somewhat straight (a check on the lognormal model) and the
slopes are approximately parallel (a check on the accel eration assumption).

The cell In Tsg and sigma estimates are obtained from the FIT function as follows:

FITY1X1
FITY2X2
FIT Y3 X3

Each FIT will yield acell A,, theln Tgy estimate, and A4, the cell sigma estimate. These
are summarized in the table below.

Summary of Least Squares Estimation of Cell Lognor mal Parameters

] Cell Number | In T ] Sigma
| 1 (T=8)) 8168 | 908
| 2 (T = 108) 6415 | 663
| 3 (T = 125) [ 5319 | 805

The three cells have 11605/(T + 273.16) values of 32.40, 30.69 and 29.15 respectively,
in cell number order. The Dataplot commands to generate the Arrhenius plot are:

LET YARRH = DATA 8.168 6.415 5.319
LET XARRH = DATA 32.4 30.69 29.15
TITLE = ARRHENIUSPLOT OF CELL T50'S
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RRRHEWILUE PLOE DF CELL TSO0°R

24 In Il iz Il

With only three cells, it is unlikely a straight line through the points will present obvious
visual lack of fit. However, in this case, the points appear to line up very well.
Finaly, the model coefficients are computed from

LET SS=DATA 53524
WEIGHT =SS
FIT YARRH XARRH

Thiswill yield aln A estimate of -18.312 (A = 18312 = 1115x10-7) and a /A H estimate

of .808. With thisvalue of & H, the acceleration between the lowest stress cell of 85°C
and the highest of 125°C is

exp ¢ alEx11605% 1 - 1 =159
558 16 29816

which is amost 14x acceleration. Acceleration from 125 to the use condition of 25°C is
3708)( . The use T50 iS e—l8.312 X 9808X11605X]j298.16: el3.137 - 507383

A single sigma estimate for all stress conditions can be calculated as a weighted average
of the 3 sigma estimates obtained from the experimental cells. The weighted averageis
(5/64) x .908 + (35/64) x .663 + (24/64) x .805 = .74.

Fitting More Complicated models
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Models
involving
several
stresses can
befit using
multiple
regression
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Two stress models, such as the temperature /voltage model given by

R
L

tp = AeXT 1P

need at least 4 or five carefully chosen stress cells to estimate all the parameters. The
Backwards L design previously described is an example of adesign for this model. The
bottom row of the "backward L" could be used for a plot testing the Arrhenius
temperature dependence, similar to the above Arrhenius example. The right hand column
could be plotted using y = In Tgg and x = In V, to check the voltage term in the model.

The overall model estimates should be obtained from fitting the multiple regression
model

Y=b+bX +bX%,
with
Y=InTy, by=InA4
b =AH, X, =1/kT
b,=fg, andx, =1Inl"

The Dataplot command for fitting this model, after setting up the' Y, X1 = X4, X2 =X,
datavectors, is ssimply

FITY X1X2
and the output gives the estimates for by, b, and b,.

Three stress models, and even Eyring models with interaction terms, can be fit by a
direct extension of these methods. Graphical plots to test the model, however, are less
likely to be meaningful as the model becomes more complex.
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8.4.2. How do you fit an accel eration model ?

8.4.2.2. Maximum likelihood

The The Likelihood equation for a multi-cell acceleration model starts by computing the Likelihood
r_naxi.mum functions for each cell, as was described earlier. Each cell will have unknown life distribution
Irlr::lklu hgod parameters that, in general, are different. For example, if alognormal model is used, each cell
od can . . -
be used to might haveitsown Tgg and © .
estimate Under an accel eration assumption, however, all the cells contain samples from populations that
glnsér' bution have the same value of & (the slope does not change for different stress cells). Also, the Tgy's are
acceleration  "€lated to one another by the acceleration model; they al can be written using the acceleration
model model equation with the proper cell stresses put in.
parameters 1o form the Likelihood equation under the acceleration model assumption, simply rewrite each
f_‘t thesame ¢ Likelihood by replacing each cell Tx, by its acceleration model equation equivalent and
ime
replacing each cell sigma by the same one overall 7 . Then, multiply al these modified cell
Likelihoods together to obtain the overall Likelihood equation.
Once you have the overall Likelihood equation, the maximum likelihood estimates of sigma and
the acceleration model parameters are the values that maximize this Likelihood. In most cases,
these values are obtained by setting partial derivatives of the log Likelihood to zero and solving
the resulting (non-linear) set of equations.
The method Asyou can see, the procedure is complicated and computationally intensive, and only practical if
is appropriate software is available. It does have many desirable features such as:
complicated « the method can, in theory at least, be used for any distribution model and acceleration
and requires model and type of censored data
il?t(\:/:/zlrléed « estimates have "optimal" statistical properties as sample sizes (i.e., numbers of failures)

become large

« approximate confidence bounds can be calculated

o dStatistical tests of key assumptions can be made using the likelihood ratio test. Some
common tests are:

o thelife distribution model versus another ssmpler model with fewer parameters (i.e.,
a 3-parameter Weibull versus a 2-parameter Weibull, or a 2-parameter Weibull vs an
exponential)

o the constant slope from cell to cell requirement of typical acceleration models
o thefit of aparticular acceleration model

In general, the recommendations made when comparing methods of estimating life distribution
model parameters also apply here. Software incorporating acceleration model analysis capability,
whilerare just afew years ago, is now readily available and many companies and universities
have developed their own proprietary versions.
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8.4.2.2. Maximum likelihood

Example Comparing Graphical Estimatesand MLE 's

Arrhenius The data from the 3-stress-cell Arrhenius example givenin the preceding section were analyzed
examplt_e using a proprietary MLE program that could fit individual cells and also do an overall Arrhenius
comparing fit. The tables below compare results.
graphical
and MLE
method Graphical Estimates MLE's
results . .
In Ts Sigma In Tso Sigma
Cell 1 8.17 91 8.89 1.21
Cell 2 6.42 .66 6.47 71
Cell 3 5.32 81 5.33 81
Acceleration Model Overall Estimates
AH Sigma InA
Graphical .808 74 -18.312
MLE .863 a7 -19.91

Note that when there were alot of failures and little censoring, the two methods were in fairly
close agreement. Both methods were also in close agreement on the Arrhenius model results.
However, even small differences can be important when projecting reliability numbers at use
conditions. In this example, the CDF at 25°C and 100,000 hours projects to .014 using the
graphical estimates and only .003 using the MLE estimates.

MLE method  The Maximum Likelihood program aso tested whether paralel lines (a single sigma) were
testsmodels  reasonable and whether the Arrhenius model was acceptable. The three cells of data passed both

and gives of these Likelihood Ratio tests easily. In addition, the MLE program output included confidence
confidence intervals for all estimated parameters.
intervals

SAS IMP™ software (previously used to find single cell Weibull MLE's) can also be used for
fitting acceleration models. Thisis shown next.

Using SAS JMP™Software To Fit Reliability M odels

Detailed If you have JIMP on your computer, set up to run as a browser application, click hereto load a
explanation  |ognormal template JM P spreadsheet named arrex.jmp. This template has the Arrhenius example
of how to data already entered. The template extends IMP's analysis capabilities beyond the standard IMP
use JMP routines by making use of JMP's powerful "Nonlinear Fit" option (links to blank templates for
]:cai?f;vr;/are 10 pboth Weibull and lognormal data are provided at the end of this page).

Arrhenius First, astandard IMP reliability model analysis for these data will be shown. By working with
model screen windows showing both IMP and the Handbook, you can try out the stepsin this analysis as

you read them. Most of the screens below are based on IMP 3.2 platforms, but comparable
analyses can be run with IMP 4.

Thefirst part of the spreadsheet should appear as illustrated below.
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Steps For Fitting The ArrheniusModel Using JIMP's™ Survival" Options

1. The"Start Time" column has al the fail and censor times and "Censor" and "Freq" were
entered as shown previoudly. In addition, the temperatures in degrees C corresponding to each
row were entered in "Temp in C". That isal that has to be entered on the template; all other
columns are calculated as needed. In particular, the "1/KT" column contains the standard
Arrhenius /KT values for the different temperature cells.

2. To obtain aplot of al three cells, along with individual cell lognormal parameter estimates,
choose "Kaplan - Meier" (or "Product Limit") from the "Analysis" menu and fill in the screen as
shown below.

Column names are transferred to the slots on the right by highlighting them and clicking on the
tab for the dot. Note that the "Temp in C" column is transferred to the "Grouping” slot in order to
analyze and plot each of the three temperature cells separately.
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8.4.2.2. Maximum likelihood

% Kaplan-Meier (Product Limit) Survival Curves

with features for testing across groups, Weibull. LogMormal, and
Exponential plots and estimates, and competing risks.

Columns from arrex

Start Time
Stop Time
Censor

OFreq Y GTONping > |

ClTemp in C

| v

Sime> | [Start Time
> LENSOr > | [Censor

Volt > Ereq > | [Freq
11T i
In¥

Loss [wfo Stress] = Remove |

Cancel | Help I

Clicking "OK" brings up the analysis screen below. All plots and estimates are based on
individual cell data, without the Arrhenius model assumption. Note: To obtain the lognormal
plots, parameter estimates and confidence bounds, it was necessary to click on various "tabs" or
"check™" marks - this may depend on the software release level.
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8.4.2.2. Maximum likelihood

3 JMP - [arrex: Survival]

File Edit Tables Eows Cols Analyze Graph Tools Window Help
Product-Limit Survival Estimates
Time Yariakble: Start Time
Cenzoring Yariable:  Censar
Survival Plot
Loghormal Plot
2 'I" ....... 85
J =105
o 125
-1_
= -
c 0
o _
=
2 .
6: a -__I_-;.-'
-2 #,’
-3 . |
10 100 1000
Start Time
[Lu:lgNDrrnal Parameter Estimates ]
Temp in < L =igma Las hu 95 huy L35 Sigma U35 Sigma M Failed
85 8941 121175 Ta18E5 124309 0E18529 316953 5
105 E46971 0.71479 B.26399 B.F001 055453 0.94020 35
125 933338 081055 5.00303 SEEY3  DEB23:7 111220 24

This screen does not give -LogLikelihood values for the cells. These are obtained from the

"Parametric Model" option in the "Survival" menu (after clicking "Analyze").

3. First we will use the "Parametric Model" option to obtain individual cell estimates. On the IMP
data spreadsheet (arrex.jmp), select all rows except those corresponding to cell 1 (the 85 degree
cell) and choose "Exclude" from the "Row" button options (or do "ctrl+E"). Then click "Analyze"
followed by "Survival" and "Parametric Model". Enter the appropriate columns, as shown below.

Make sure you use "Get Model" to select "lognormal” and click "Run Model".

http://www.itl.nist.gov/div898/handbook/apr/section4/apr422.htm (5 of 12) [5/1/2006 10:42:29 AM]



8.4.2.2. Maximum likelihood

% arrex: Survival Model

© Start Time > Time > |[Start Time |
IC1 Stop Time
ICCensor =
CiFreg » Censor > | ICEI’ISDT
ICiTemp in C
[0 Volt > Ficg > |[Freq
21 7kT ~| Effects In Model
Saddy | =]
2 Lross > |
SINest> |
Effect
Macros: -
Degree: IE_ Hemove |
[~ No Intercept _Get Model | [_Log Normal hd

Have Mudell Help | Clusel [ Run Model |

Thiswill generate amodel fit screen for cell 1. Repeat for cells 2 and 3. The three resulting model

fit screens are shown below.

fd arrex: Model Fit

Parametric Survival Fit ;|

Log-Mormal Distribution
Cenzoring Yariable: Censor

[nale Model Test )

Mol -LogLikelihood  Chi-Sguare DF  Prob=Chisg
Ditfference 1] 0.a00a 0 0.000a
Full 21 56744962
Reduced 21 56744962

r[Parameter Eztimates ]

Term Ezfimate  Std Error Lowwer CL Upper CL
Intercept 559140803 08599662 7.5186519 12430914
Sigma 121174622 04921952 06185237 31693321

arrex: Model Fit

1 Parametric Survival Fit -]
Log-Mormal Distribution
Censaring Yariable:  Censar

[hale Model Test |

hodel -LogLikelihood  Chi-=quare OF  Probe=Chizg
Difference 0 0.0000 0 0.0000
Full 19225023
Reduced 21 9225923

r[F'arame‘[er Estimates ]

Term Estimate  Std Error Lower CL Upper CL
IMtercept 646971195 01075319 B 2639575 67001499
Sioms 0714757658 00921926 0565455 0940195

arrex: Model Fit
Farametric Survival Fit ;|

I Arihlrwrmal Pistriba dian [
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8.4.2.2. Maximum likelihood
g e Cern i —

Censoring Variable:  Censar
ol Model Test |

Model -LogLikelihood  Chi-Square DF  Prob=ChiSc
Difference n 0.0000 1] 0.000c
Full 304062965
Feduced 304062965

r[jF‘arameter Eztimates ]

Term Eztimate  Std Error Lowwer CL Upper CL
Imtercept 5333375997 01625208 50030347 SE6GE72853
Sigma 051055897 011534509 06239169 1112196

o

Note that the model estimates and bounds are the same as obtained in step 2, but these screens

also give ~LogLikelihood values. Unfortunately, as previously noted, these values are off by the
sum of the {In(times of failure)} for each cell. These sumsfor the three cells are 31.7871,
213.3097 and 371.2155, respectively. So the correct cell -LogLikelihood values for comparing
with other MLE programs are 53.3546, 265.2323 and 156.5250, respectively. Adding them
together yields atotal =LogLikelihood of 475.1119 for all the data fit with separate lognormal
parameters for each cell (no Arrhenius model assumption).

4. To fit the Arrhenius model across the three cells go back to the survival model screen, thistime
with all the data rowsincluded and the "1/KT" column selected and put into the "Effectsin

Model" box viathe"Add" button. This adds the Arrhenius temperature effect to the MLE analysis
of al the cell data. The screen looks like:

2 arrex: Survival Model

©) Start Time s 5 dime > |[Start Time =
IC1 Stop Time
IDCensor =

IC1Freq > LEnsor > ||ansur
[CITemp in C

T Volt > Fiea > |[Freq
1 fkT i~| Effects In Model

>add > | [T =
> Lross > |

SINestr |

Effect
Macros: -

Degree: IE_ Removel |
™ Mo Intercept Get Model | | Log Normal |

Save I'u'lndt:l| Help | Elnsel [ Run Model |

Clicking "Run Model" produces
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8.4.2.2. Maximum likelihood
# JMP - [arrex: Model Fit]

Arrhenius
example
using

special IMP
template and
"Nonlinear
Fit"

File Edit Tables Eows Cols Analyze Graph 1
Parametric Survival Fit

Log-Mormal Distribution

Censoring Yariable:  Censar

[haie Model Test |

Model -LogLikelihood  Chi-Square DF  Prob=Chi=g
Difference 742894718 145.57849 1 =.0001
Full 105493393

Feduced 179.782865

[F‘arameter Eztimates ]

Term Estimate Std Errar - Lowwer CL Upper CL
Irtercept -19908172 23204219 -249341 -15.73504
TET 086290037 00760627 07266623 1.0293195
igma Q77193862 00716773 063200354 0936506

The MLE estimates agree with those shown in the tables earlier on this page. The -LogLikelihood

for the model is given under "Full" in the output screen (and should be adjusted by adding the
sum of al the In failure times from all three cellsif comparisons to other programs might be

made). Thisyieldsamodel =LogLikelihood of 105.4934 + 371.2155 = 476.7089.

5. Thelikelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single

sigma acceleration assumption) is- 2Log-. , with.l denoting the difference between the
LogLikelihoods with and without the Arrhenius model assumption. Using the results from steps 3

and 4, we have - 2LogA =2 x (476.709 - 475.112) = 3.194. The degrees of freedom (dof) for the
Chi-Square test statisticis6 - 3 = 3, since six parameters were reduced to three under the
acceleration model assumption. The chance of obtaining avalue 3.194 or higher is 36.3% for a
Chi Square distribution with 3 dof, which indicates an acceptable model (no significant lack of
fit).

This completesa IMP 3.2 Arrhenius model analysis of the three cells of data. Since the Survival
Modeling screen allows any "effects" to be included in the model, if different cells of data had
different voltages, the "In V" column could be added as an effect to fit the Inverse Power Law
voltage model. In fact, severa effects can be included at once if more than one stress varies
across cells. Cross product stress terms could also be included by adding these columns to the
spreadsheet and adding them in the model as additional "effects".

Steps For Fitting The Arrhenius Model Using the " Nonlinear Fit" Option and Special IMP
Templates

There is another powerful and flexible tool included within IMP that can use MLE methods to fit
reliability models. While this approach requires some simple programming of JMP calculator
equations, it offers the advantage of extending JIMP's analysis capabilities to readout data (or
truncated data, or any combination of different types of data). Templates (available below) have
been set up to cover lognormal and Weibull data. The spreadsheet used above (arrex.jmp) isjust a
partial version of the lognormal template, with the Arrhenius data entered. The full templates can
also be used to project CDF's at user stress conditions, with confidence bounds.

The following steps work with arrex.jmp because the "loss" columns have been set up to calculate
-LogLikelihoods for each row.
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1. Load the arrex.jmp spreadsheet and Click "Analyze" on the Tool Bar and choose "Nonlinear
Fit".
2. Select the Loss (w/Temp) column and click "Loss" to put "Loss (w/Temp)" in the box. This

column on the spreadsheet automatically calculates the - LogLikelihood values at each data point
for the Arrhenius/lognormal model. Click "OK" to run the Nonlinear Analysis.

% Nonlinear Regression:

The X variable should have a formula to predict % with
parameters to be estimated.

Columns from arrex

Stop Time =] |
Censor w

Freq |

CITemp in C AP -

Loss [wivolts)

=l | |Loss [wiTemp)
[ Show Formulas | oK | Cancel | Help |

3. You will next see a"Nonlinear Fit" screen. Select "Lossis -LogLikelihood" and click the
"Reset” and "Go" buttons to make sure you have a new analysis. The parameter values for the
constant In A (labeled "Con"), AH and sig will appear and the value of - LogLikelihood is given
under the heading "SSE". These numbers are-19.91, 0.863, 0.77 and 476.709, respectively. You
can now click on "Confid Limits" to obtain upper and lower confidence limits for these
parameters. The stated value of "Alpha = .05" means that the interval between thelimitsisa 95%
confidence interval. At this point your "Nonlinear Fit" screen appears as follows
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3 JMP - [arTex: Non-linear Fitting]

File Edit Tables Eows Cols Analyze Graph Tools Window Help
I-[:NDI'I"I'IEEF Fitting Control Panel ] ]

Go e []=econd Detiv. Method
[ ] [ P ] [ ] continuous Updste

(Stop ) (Reset]  [Tteration Log
Lozz iz -Loglikelihood

[ Confid Limits |

PLCI iter=2 Converged g=0.00045
Converged in the Gradient

Current Limit  Alpha
terstion 2 B0 0.050
Shoartening ] 15
O Criterion 0 0.00a00a1

O Criterion G.aT2E86e-15 0.0000001
 Criterion 333575627 0.000001

CL Criterion 7 0.00001
Parameter  Current “alue Lock S5E
=iy 07719862625 [ 476, 705891 35
DELTAH 0862900416 [] 475 62964291
Caon 1990817353 []
==E DFE M=E RMZE

4767089135 B4 74485763 27202031
Parameter Edtimate  ApproxStdErr Lowver CL Upper CL
=iy 07719362625 007167733 065013789 093645055
DELTAH 0.862900416 007E0627 072676031 1.02975186
Zon 1980617353 232042225 24931964 15739005

" o

[[Cnrrelaticln of Estimates ]

4. Next you can run each cell separately by excluding all data rows corresponding to other cells
and repeating steps 1 through 3. For this analysis, select the "L oss (w/o Stress)" column to put in
"Loss' in step 2, since asingle cell fit does not use temperature . The numbers should match the

table shown earlier on this page. The three cell ~LogLikelihood values are 53.355, 265.232 and

156.525. These add to 475.112, which is the minimum =loglikelihood possible, sinceit uses 2
independent parametersto fit each cell separately (for atotal of six parameters, overall).

The likelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single

sigma accel eration assumption) is- 2Log A =2 x (476.709 - 475.112) = 3.194. Degrees of
freedom for the Chi-Square test statisticis 6 - 3 = 3, since six parameters were reduced to three
under the acceleration model assumption. The chance of obtaining avalue of 3.194 or higher is
36.3% for a Chi-Square distribution with 3 dof, which indicates an acceptable model (no
significant lack of fit).

For further examples of IMP reliability analysis there is an excellent collection of IMP statistical
tutorials put together by Professor Ramon L eon and one of his students, Barry Eggleston,
available on the Web at
http://www.nist.gov/cqgi-bin/exit_nist.cgi?url=http://web.utk.edu/~leon/jmp/.
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Data entry
on JMP
templates
for general
reliability
data

How To Use IMP Templates For Lognormal or Weibull Data (Including Acceleration
Model Analysis)

With IMP installed to run as a browser application, you can click on weibtmp.jmp or
lognmtmp.jmp and load (and save for later use) blank templates similar to the one shown above,
for either Weibull or lognormal data analysis. Here's how to enter any kind of data on either of
the templates.

Typical Data Entry

1. Any kind of censored or truncated or readout data can be entered. The rules are as follows for
the common case of (right) censored reliability data:

i) Enter exact failure timesin the "Start Time" column, with "0" in the "Cens'
column and the number of failures at that exact timein the "Freq" column.

ii) Enter temperature in degrees Celsius for the row entry in "Temp in C", whenever
data from severa different operating temperatures are present and an Arrhenius
model fit is desired.

iii) Enter voltagesin "Volt" for each row entry whenever data from several different
voltages are present and an Inverse Power Law model fit is desired. If both
temperatures and voltages are entered for all data rows, a combined two-stress model
can befit.

iv) Put censor times (when unfailed units are removed from test, or no longer
observed) inthe"Start Time" column, and enter "1" in the "Cens" column. Put the
number of censored unitsin the "Freg" column.

V) If readout (also known asinterval) data are present, put the interval start time and
stop time in the corresponding columns and "2" in the "Cens" column. Put the
number of failures during the interval in the "Freq" column. If the number of failures
is zero, it doesn't matter if you include the interval, or not.

Using The Templates For M odél Fitting and CDF Projections With Bounds

Pick the appropriate template; weibtmp.jmp for a Weibull fit, or lognmtmp.jmp for alognormal
fit. Follow thislink for documentation on the use of these templates. Refer to the Arrhenius
model example above for an illustration of how to use the IMP non-linear fit platform with these
templates.

A few tricks are needed to handle the rare cases of truncated data or left-censored data. These are
described in the template documentation and also repeated below (since they work for the IMP
survival platform and can be used with other similar kinds of reliability analysis software .
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How to
handle
truncated or
| eft-censored
data using
JMP
templates

NIST
SEMATECH

JMP Template Data Entry For Truncated or Left-Censored Weibull or L ognormal Data

L eft censor ed data means all exact times of failure below alower cut-off time T are unknown,

but the number of these failuresis known. Merely enter an interval with start time 0 and stop time
T, on the appropriate template and put "2" in the "Cens" column and the number in the "Freg"

column.

L eft truncated data means all data points below alower cut off point T are unknown, and even

the number of such pointsis unknown. This situation occurs commonly for measurement data,
when the measuring instrument has alower threshold detection limit at T. Assume there are n

data points (all above Tg) actually observed. Enter the n points as you normally would on the
appropriate template ("Cens' gets 0 and "Freq" gets 1) and add a start time of T with a"Cens"
value of 1 and a"Freq" value of -n (yes, minusn!).

Right truncated data means all data points above an upper cut-off point T, are unknown, and
even the number of such pointsis unknown. Assume there are n data points (all below T,)

actually observed. Enter the n points as you normally would on the appropriate template ("Cens"
gets 0 and "Freq" gets 1) and add a start time of O and a stop time of T, with a"Cens" value of 2

and a"Freq" value of -n (yes, minusn!)
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8.4.2.3. Fitting models using degradation data instead of failures

[ P ENGINEERING STATISTICS HANDBOOK
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8. Assessing Product Reliability

8.4. Reliability Data Analysis

8.4.2. How do you fit an acceleration model ?

8.4.2.3.Fitting models using degradation data instead

of failures
Ifyoucanfit  When failure can be related directly to a change over time in a measurable product
modelsusing  parameter, it opens up the possibility of measuring degradation over time and using that data
degradation to extrapolate when failure will occur. That allows us to fit acceleration models and life
data, you distribution models without actually waiting for failures to occur.
don't need e iy
agtr:JaIn test This overview of degradation modeling assumes you have a chosen life distribution model
failures and an acceleration mode! and offers an alternative to the accelerated testing methodology
based on failure data, previously described. The following topics are covered:
o Common assumptions
« Advantages
« Drawbacks
« A simple method
« A more accurate approach for a special case
o Example
More details can be found in Nelson (1990, pages 521-544) or Tobias and Trindade (1995,
pages 197-203).
Common Assumptions When M odeling Degradation Data
You need a Two common assumptions typically made when degradation data are modeled are the
measurable following:
parameter 1. A parameter D, that can be measured over time, drifts monotonically (upwards, or
that drifts downwards) towards a specified critical value DF. When it reaches DF, failure occurs.
I(icileegz;r?di)a 2. Thedrift, measured in termsof D, islinear over time with a slope (or rate of
critic a]y degradation) R, that depends on the relevant stress the unit is operating under and also
failure value the (random) characteristics of the unit being measured. Note: It may be necessary to

define D as atransformation of some standard parameter in order to obtain linearity -
logarithms or powers are sometimes needed.

The figure below illustrates these assumptions by showing degradation plots of 5 units on
test. Degradation readings for each unit are taken at the same four time points and straight
lines fit through these readings on a unit-by-unit basis. These lines are then extended up to a
critical (failure) degradation value. The projected times of failure for these units are then read
off theplot. Theare: ty, ty, ... ts.
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8.4.2.3. Fitting models using degradation data instead of failures

Plot of

linear Degra: ation
degradation
trendsfor 5 b
unitsread
out at four
time points
T A
Time
In many practical situations, D starts at O at time zero, and all the linear theoretical
degradation lines start at the origin. Thisisthe case when D isa"% change" parameter, or
failure is defined as a change of a specified magnitude in a parameter, regardless of its
starting value. Lines all starting at the origin simplify the analysis since we don't have to
characterize the population starting value for D, and the "distance" any unit "travels' to reach
failure is aways the constant DF. For these situations, the degradation lines would look as
follows:
Often, the
degradation
linesgo
through the
origin - as
when %
changeisthe
measurable
parameter
increasing to
afailure
level
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It is also common to assume the effect of measurement error, when reading values of D, has
relatively little impact on the accuracy of model estimates.

Advantages of M odeling Based on Degradation Data

Modeling 1. Every degradation readout for every test unit contributes a data point. Thisleads to

based on large amounts of useful data, even if there are very few failures.

ComIOII ete f 2. You don't have to run tests long enough to obtain significant numbers of failures.

=amp ?S ° i 3. You can run low stress cells that are much closer to use conditions and obtain

d meaningful degradation data. The same cells would be awaste of timeto run if failures
ata, even : ; ) . )

with low were needed for modeli ng. Since these cells are more typical of use conditions, it

ress calls makes sense to have them influence model parameters.

offers many 4. Simple plots of degradation vstime can be used to visually test the linear degradation

Drawbacksto Modeling Based on Degradation Data
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Degradation
may not
proceedina
smooth,
linear
fashion
towards
what the
customer
calls
"failure"

Asimple
approach is
to extend
each unit's
degradation
lineuntil a
projected
“failure
time" is
obtained

1.

For many failure mechanisms, it is difficult or impossible to find a measurable
parameter that degrades to a critical value in such away that reaching that critical
value is equivalent to what the customer calls afailure.

Degradation trends may vary erratically from unit to unit, with no apparent way to
transform them into linear trends.

Sometimes degradation trends are reversible and a few units appear to "hedl
themselves' or get better. Thiskind of behavior does not follow typical assumptions
and is difficult to model.

Measurement error may be significant and overwhelm small degradation trends,
especialy at low stresses.

Even when degradation trends behave according to assumptions and the chosen
models fit well, the final results may not be consistent with an analysis based on actual
failure data. This probably means that the failure mechanism depends on more than a
simple continuous degradation process.

Because of the last listed drawback, it isagood ideato have at |east one high-stress cell
where enough real failures occur to do a standard life distribution model analysis. The
parameter estimates obtained can be compared to the predictions from the degradation data
analysis, asa"reality" check.

A Simple Method For M odeling Degradation Data

1.

As shown in the figures above, fit aline through each unit's degradation readings. This
can be done by hand, but using a least squares regression program is better (like
Dataplot's"LINEAR FIT Y X" or EXCEL's line fitting routines).

Take the equation of the fitted line, substitute DF for Y and solve for X. This value of
X isthe "projected time of fail" for that unit.

Repeat for every unit in astress cell until a complete sample of (projected) times of
failureis obtained for the cell.

Use the failure times to compute life distribution parameter estimates for a cell. Under
the fairly typical assumption of alognormal model, thisisvery ssmple. Take natural

logarithms of all failure times and treat the resulting data as a sample from a normal
distribution. Compute the sample mean and the sample standard deviation. These are

estimates of In Tgg and < , respectively, for the cell.

Assuming there are k cells with varying stress, fit an appropriate accel eration model
using the cell In Tsy's, as described in the graphical estimation section. A single sigma

estimate is obtained by taking the square root of the average of the cell o estimates
(assuming the same number of units each cell). If the cells have n; units on test, with

the n;'s not all equal, use the pooled sum of squares estimate across all k cells
calculated by

Eony

na 1 = 2
J _Z(ﬂj—l)fzz%_xj)
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Models can
be fit using
all the
degradation
readings and
linear
regression

A MoreAccurate Regression Approach For the Case When D =0 at time 0 and the
" Distance To Fail" DF isthe Samefor All Units

L et the degradation measurement for the i-th unit at the j-th readout time in the k-th stress
cell be given by Dj;y, and let the corresponding readout time for this readout be denoted by tjy,

. That readout gives a degradation rate (or slope) estimate of Dj;/ tj. This follows from the
linear assumption or:

(Rate of degradation) x (Time on test) = (Amount of degradation)
que_d on that readout alone, an estimate of the natural logarithm of the timeto fail for that
unitis
Yijk = In DF - (In Djjc - Intjy).
Thisfollows from the basic formula connecting linear degradation with failure time
(rate of degradation) x (time of failure) = DF
by solving for (time of failure) and taking natural logarithms.

For an Arrhenius model analysis, with

{ :AEEHJ'F:T

Vg =@+ bx,

with the x, values equal to I/KT. Here T is the temperature of the k-th cell, measured in
Kelvin (273.16 + degrees Celsius) and K is Boltzmann's constant (8.617 x 105 in eV/ unit

Kelvin). Use alinear regression program to estimatea = In Aand b = A h. If we further
assumet; hasalognormal distribution, the mean square residual error from the regression

fit is an estimate of - (with «¥ the lognormal sigma).

One way to think about this model is as follows: each unit has arandom rate R of
degradation. Since t; = DF/R, it follows from a characterization property of the normal
distribution that if t; islognormal, then R must aso have alognormal distribution (assuming
DF and R are independent). After we take logarithms, In R has anormal distribution with a
mean determined by the acceleration model parameters. The randomnessin R comes from

the variability in physical characteristics from unit to unit, due to material and processing
differences.

Note: The estimate of sigma based on this simple graphical approach might tend to be too
large because it includes an adder due to the measurement error that occurs when making the
degradation readouts. Thisis generally assumed to have only a small impact.

Example: Arrhenius Degradation Analysis
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An example A component has a critical parameter that studies show degrades linearly over time at arate

using the that varies with operating temperature. A component failure based on this parameter occurs
regression when the parameter value changes by 30% or more. Fifteen components were tested under 3
approach to different temperature conditions (5 at 65°, 5 at 85° and the last 5 at 105°). Degradation
fitan percent values were read out at 200, 500 and 1000 hours. The readings are given by unit in
Arrhenius the following three temperature cell tables.
modl 65 Degrees C
| 200 hr | 500 hr | 1000 hr
|Unit1 .87 | 1.48 | 281
|lUnit2 .33 | .96 | 2.13
lUnit3 .94 | 291 | 5.67
|Unit4 .72 | 1.98 | 4.28
Unit5 .66 | 99 214
85 DegreesC
| 200 hr | 500 hr | 1000 hr
Unit1 141 | 2.47 | 571
lUnit2 361 | 8.99 | 17.69
lUnit3 213 | 5.72 | 11.54
lUnit4 436 | 9.82 | 19.55
Unit5 6.91 | 17.37 | 34.84
105 Degrees C
| 200 hr | 500 hr | 1000 hr
lUnit1 24.58 | 62.02 | 124.10
lUnit2  9.73 | 24.07 | 48.06
Unit3 474 | 11.53 | 23.72
lUnit4  23.61 | 58.21 | 117.20
Unit5 10.90 | 27.85 54.97

Note that 1 unit failed in the 85 degree cell and 4 unitsfailed in the 105 degree cell. Because
there were so few failures, it would be impossible to fit alife distribution model in any cell
but the 105 degree cell, and therefore no acceleration model can be fit using failure data. We
will fit an Arrhenius/Lognormal model, using the degradation data.

Dataplot Solution:
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Dataplot
easlly fitsthe
model to the
degradation
data

Other
regression
programs
would work
equally well
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From the above tables, first create a data row of 45 degradation values starting with the first
row in the first table and proceeding to the last row in the last table. Put these in atext file
called DEGDAT. DEGDAT has one row of 45 numbers looking like the following: .87, .33,
.94, .72, .66, 1.48, .96, 2.91, 1.98, .99, .. ., 124.10, 48.06, 23.72, 117.20, 54.97.

Next, create atext file TEMPDAT, containing the corresponding 45 temperatures. TEMP has
15 repetitions of 65, followed by 15 repetitions of 85 and then 15 repetitions of 105.

Finally, create atext file TIMEDAT, containing the corresponding readout times. These are
200, 200, 200, 200, 200, 500, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, repeated 3
times.

Assuming the datafiles just created are placed in the Dataplot directory, the following
commands will complete the analysis:

READ DEGDAT. DEG

READ TEMPDAT. TEMP

READ TIMEDAT. TIME

LET Y1JK = LOG(30) - (LOG(DEG) - LOG(TIME))
LET XI1JK = 100000/(8.617* (TEMP + 273.16))
LINEAR FIT YIJK XIJK

The output is (with unnecessary items edited out)

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N =45

DEGREE = 1

PARAMETER ESTIMATES (APPROX ST. DEV) t-VALUE
1 A0 -18.9434  (1.833) -10

2 A1 818774 (.5641e-01) 15

RESIDUAL STANDARD DEVIATION = .5610

The Arrhenius model parameter estimates are: In A =-18.94; /4 H = .82. An estimate of the
lognormal sigmaiis 7 = .56.
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8.4.3. How do you project reliability at use conditions?
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8. Assessing Product Reliability
8.4. Reliahility Data Analysis

8.4.3.How do you project reliability at use
conditions?

When General Considerations

projecting Reliabil] _— : :

from high 1ability proj ections based on failure datafrom_hlgh stresstests are
dressto use based on assuming we know the correct acceleration model for the
conditions, failure mechanism under investigation and we are al'so using the correct
having a life distribution model. Thisis because we are extrapolating

correct "_back_wa_rds"_ - trying to describe fai lure behavior in the early tail of the
acceleration  lifedistribution, where we have little or no actual data

r_nodel and For example, with an acceleration factor of 5000 (and some are much
life larger than this), the first 100,000 hours of use lifeis"over" by 20 hours
distribution  jnto the test. Most, or al, of the test failures typically come later in time
”Ptdelalls and are used to fit alife distribution model with only the first 20 hours
critic

or less being of practical use. Many distributions may be flexible
enough to adequately fit the data at the percentiles where the points are,
and yet differ from the data by orders of magnitude in the very early
percentiles (sometimes referred to as the early "tail” of the distribution).

However, it isfrequently necessary to test at high stress (to obtain any
failures at al!) and project backwards to use. When doing this bear in
mind two important points:
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8.4.3. How do you project reliability at use conditions?

Project for
each failure
mechanism

separately

Arrhenius
model
projection
example
with
Datapl ot
commands

« Distribution models, and especially acceleration models, should
be applied only to asingle failure mechanism at atime. Separate

out failure mechanisms when doing the data analysis and use the
competing risk model to build up to atotal component failure rate

« Trytofind theoretical justification for the chosen models, or at
least a successful history of their use for the same or very similar
mechanisms. (Choosing models solely based on empirical fitis
like extrapolating from quicksand to a mirage.)

How to Project from High Stressto Use Stress

Two types of use-condition reliability projections are common:

1. Projection to use conditions after completing a multiple stress cell
experiment and successfully fitting both a life distribution model
and an acceleration model

2. Projection to use conditions after asingle cell at high stressisrun
asalinereliability monitor.

The Arrhenius example from the graphical estimation and the MLE
estimation sections ended by comparing use projections of the CDF at

100,000 hours. Thisis a projection of the first type. We know from the
Arrhenius model assumption that the Tgg at 25°C isjust

ot 1R (25+ 273.16)

Using the graphical model estimates for In A and we have

Tsg at Use = 18312 x @808 x 11605/208.16 = ¢13.137 = 507383

and combining this Ty with the estimate of the common sigma of .74

allows us to easily estimate the CDF or failure rate after any number of
hours of operation at use conditions. In particular, the Dataplot
command

LET Y = LGNCDF((T/T50),sigma)
evaluates alognormal CDF at time T, and
LET Y = LGNCDF((100000/507383),.74)

returns the answer .014 given in the MLE estimation section as the

graphical projection of the CDF at 100,000 hours at a use temperature of
25°C.

If the life distribution model had been Weibull, the same type of
analysis would be performed by letting the characteristic life parameter

X vary with stress according to the acceleration model, while the shape
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parameter /* isconstant for all stress conditions.

The second type of use projection was used in the section on lognormal
and Weibull tests, in which we judged new lots of product by looking at

the proportion of failuresin a sample tested at high stress. The
assumptions we made were;

« we knew the acceleration factor between use and high stress

« the shape parameter (sigmafor the lognormal, gammafor the
Weibull) is also known and does not change significantly from lot
tolot.

With these assumptions, we can take any proportion of failures we see
from ahigh stress test and project a use CDF or failure rate. For a
T-hour high stress test and an acceleration factor of A from high stressto
use stress, an observed proportion p is converted to a use CDF at
100,000 hours for alognormal model as follows:

LET TS0STRESS = T*LGNPPF(p, 7 )

LET CDF = LGNCDF((100000/(A* TS0STRESS)), 7 )

If the model is Weibull, the Dataplot commands are

LET ASTRESS = T*WEIPPF(p, )
LET CDF = WEICDF((100000/(A* ASTRESS)), )
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8.4.4.How do you compare reliability
between two or more populations?

Several
methods for
comparing
reliability
between
populations
are
described

Comparing reliability among populations based on samples of failure
data usually means asking whether the samples came from populations
with the same reliability function (or CDF). Three techniques already
described can be used to answer this question for censored reliability
data. These are:

o Comparing sample proportion failures

o Likelihood ratio test comparisons

o Lifetime regression comparisons

Comparing Sample Proportion Failures

Assume each sample is arandom sample from possibly a different lot,
vendor or production plant. All the samples are tested under the same
conditions. Each has an observed proportion of failures on test. Call
these sample proportions of failures p;, po, pPs, ...p,. Could these all have

come from equivalent popul ations?

Thisisaquestion covered in Chapter 7 for two populations, and for
more than two populations, and the techniques described there apply
equally well here.

Likelihood Ratio Test Comparisons
The Likelihood Ratio test was described earlier. In this application, the

Likelihood ratio A has as a denominator the product of all the
Likelihoods of all the samples assuming each population hasits own
unique set of parameters. The numerator is the product of the
Likelihoods assuming the parameters are exactly the same for each

population. The test looks at whether -2InA isunusually large, in which
case it is unlikely the populations have the same parameters (or
reliability functions).

This procedure is very effective if, and only if, it is built into the
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analysis software package being used and this software covers the
models and situations of interest to the analyst.

Lifetime Regression Comparisons

Lifetime regression is similar to maximum likelihood and likelihood
ratio test methods. Each sample is assumed to have come from a

popul ation with the same shape parameter and a wide range of questions
about the scale parameter (which is often assumed to be a"measure” of
lot-to-lot or vendor-to-vendor quality) can be formulated and tested for
significance.

For acomplicated, but realistic example, assume a company
manufactures memory chips and can use chips with some known defects
("partia goods') in many applications. However, there is a question of
whether the reliability of "partial good" chipsisequivaent to "all good"
chips. There exists lots of customer reliability datato answer this
guestion. However the data are difficult to analyze because they contain
several different vintages with known reliability differences as well as
chips manufactured at many different locations. How can the partial
good vs all good question be resolved?

A lifetime regression model can be constructed with variables included
that change the scale parameter based on vintage, location, partial
versus al good, and any other relevant variables. Then, agood lifetime
regression program will sort out which, if any, of these factors are
significant and, in particular, whether there is a significant difference
between "partial good" and "all good".
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This subsection describes how to fit system repair rate models when you
have actual failure data. The data could come from from observing a
system in normal operation or from running tests such as Reliability

| mprovement tests.

The three models covered are the constant repair rate (HPP/exponential)
model, the power law (Duane) model and the exponential law model.
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8.4.5. How do you fit system repair rate models?

8.4.5.1.Constant repair rate
(HPP/exponential) model

Thissection  The HPP or exponential model iswidely used for two reasons:
covers

o Most systems spend most of their useful lifetimes operating in the

estimating flat constant repair rate portion of the bathtub curve
MTBF's and _ P P _
calculating « Itiseasy to plan tests, estimate the M TBF and calculate
upper and confidence interval s when assuming the exponential model.
lower This section covers the following:
confidence : : i i

1. Estimating the MTBF (or repair rate/failurerate
bounds : (or rep /

How to usethe M TBF confidenceinterval factors

Tables of MTBF confidenceinterval factors

Confidenceinterval equation and " zero fails' case

a o 0N

Dataplot/EXCEL calculation of confidence intervals

6. Example
Estimating the MTBF (or repair rateffailurerate)

For the HPP system model, as well as for the non repairable exponential
population model, there is only one unknown parameter A (or

equivaently, the MTBF = 1/ A ). The method used for estimation is the
same for the HPP model and for the exponential population model.
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The best
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just "Total
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"Total
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Confidence
Interval
Factors
multiply the
estimated
MTBF to
obtain lower
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bounds on
the true
MTBF

8.4.5.1. Constant repair rate (HPP/exponential) model

The estimate of the MTBF is

MTBF

b

_ Total Systemis) aperation time
Total number of failures

1 _ Total mumber of jfailures

) Total Svetem(s) (or uniis) operafion Gme
MTEF

This estimate is the maximum likelihood estimate whether the data are
censored or complete, or from arepairable system or a non-repairable

population.

How To Usethe M TBF Confidence Interval Factors

1.

10.

Estimate the MTBF by the standard estimate (total unit test hours
divided by total failures)

Pick a confidence level (i.e., pick 100x(1- ¢ )). For 95%, = = .05;
for 90%, ¢ = .1; for 80%, ¢ = .2 and for 60%, ¢ = .4

Read off alower and an upper factor from the confidence interval
tables for the given confidence level and number of failuresr

Multiply the MTBF estimate by the lower and upper factors to
obtain MTBFgyer and MTBF jp0er

When r (the number of failures) = 0, multiply the total unit test

hours by the "0 row" lower factor to obtain 2100 x (1- ¢ /2)%
one-sided lower bound for the MTBF. Thereis no upper bound
whenr = 0.

Use (MTBFgyer, MTBF jp0¢r) @s @ 100%(1- )% confidence

interval for the MTBF A (r > 0)

Use MTBF,ger 8 a (one-sided) lower 100x(1- £ /2)% limit for
the MTBF

Use MTBF
the MTBF

Use (UMTBF

upper 8 @ (one-sided) upper 100%(1-“*/2)% limit for

uppers YMTBF o) s @100%(1- )% confidence
interval for A

Use IMTBF e as @ (one-sided) lower 100%(1- % /2)% limit for
A
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11. Use YMTBF, e as a (one-sided) upper 100x(1-“/2)% limit for
A
Tables of MTBF Confidence Interval Factors

Confidence Confidence Interval Factorsto Multiply MTBF Estimate
bound factor
tables for 60% 80%
60, 80, 90 Num L ower for Upper for L ower for Upper for
and 95% Failsr MTBF MTBF MTBF MTBF
confidence
0 0.6213 - 0.4343 -
1 0.3340 4.4814 0.2571 9.4912
2 0.4674 2.4260 0.3758 3.7607
3 0.5440 1.9543 0.4490 2.7222
4 0.5952 1.7416 0.5004 2.2926
5 0.6324 1.6184 0.5391 2.0554
6 0.6611 1.5370 0.5697 1.9036
7 0.6841 1.4788 0.5947 1.7974
8 0.7030 1.4347 0.6156 1.7182
9 0.7189 1.4000 0.6335 1.6567
10 0.7326 1.3719 0.6491 1.6074
11 0.7444 1.3485 0.6627 1.5668
12 0.7548 1.3288 0.6749 1.5327
13 0.7641 1.3118 0.6857 1.5036
14 0.7724 1.2970 0.6955 1.4784
15 0.7799 1.2840 0.7045 1.4564
20 0.8088 1.2367 0.7395 1.3769
25 0.8288 1.2063 0.7643 1.3267
30 0.8436 1.1848 0.7830 1.2915
35 0.8552 1.1687 0.7978 1.2652
40 0.8645 1.1560 0.8099 1.2446
45 0.8722 1.1456 0.8200 1.2280
50 0.8788 1.1371 0.8286 1.2142
75 0.9012 1.1090 0.8585 1.1694
100 0.9145 1.0929 0.8766 1.1439
500 0.9614 1.0401 0.9436 1.0603

Confidence Interval Factorsto Multiply MTBF Estimate

90% 95%
Num  Lower for Upper for L ower for Upper for
Fails MTBF MTBF MTBF MTBF
0 0.3338 - 0.2711 -
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1 0.2108 19.4958 0.1795 39.4978
2 0.3177 5.6281 0.2768 8.2573
3 0.3869 3.6689 0.3422 4.8491
4 0.4370 2.9276 0.3906 3.6702
5 0.4756 2.5379 0.4285 3.0798
6 0.5067 2.2962 0.4594 2.7249
7 0.5324 2.1307 0.4853 2.4872
8 0.5542 2.0096 0.5075 2.3163
9 0.5731 1.9168 0.5268 2.1869
10 0.5895 1.8432 0.5438 2.0853
11 0.6041 1.7831 0.5589 2.0032
12 0.6172 1.7330 0.5725 1.9353
13 0.6290 1.6906 0.5848 1.8781
14 0.6397 1.6541 0.5960 1.8291
15 0.6494 1.6223 0.6063 1.7867
20 0.6882 1.5089 0.6475 1.6371
25 0.7160 1.4383 0.6774 1.5452
30 0.7373 1.3893 0.7005 1.4822
35 0.7542 1.3529 0.7190 1.4357
40 0.7682 1.3247 0.7344 1.3997
45 0.7800 1.3020 0.7473 1.3710
50 0.7901 1.2832 0.7585 1.3473
75 0.8252 1.2226 0.7978 1.2714
100 0.8469 1.1885 0.8222 1.2290
500 0.9287 1.0781 0.9161 1.0938

Confidence Interval Equation and " Zero Fails' Case

Formulas Confidence bounds for the typical Type | censoring situation are

for obtained from chi-square distribution tables or programs. The formula
confidence for calculating confidence intervalsis:

bound - -

factors - MTEFx2r MTBEFx2r

even for 1 < True MTBF < — =l—w
"zerofails’ .-}».-::’ 2.2(r+]]) a":frl_ Cr A

case - -

In thisformula, AT/ 2.2r isavaluethat the chi-square statistic with
2r degrees of freedom is greater than with probability 1-¢z/2. In other

words, the right-hand tail of the distribution has probability 1- /2. An
even simpler version of this formula can be written using T = the total
unit test time:
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Datapl ot
and EXCEL
calculation
of
confidence
limits

|y iy

X = < True MTBF < ,J = > =
| .-j:-::’ 220+ ,-:fl_ Cr A
These bounds are exact for the case of one or more repairable systems
on test for afixed time. They are also exact when non repairable units

are on test for afixed time and failures are replaced with new units
during the course of the test. For other situations, they are approximate.

When there are zero failures during the test or operation time, only a
(one-sided) MTBF lower bound exists, and thisis given by

MTBF gyer = T/(7In)
The interpretation of this bound is the following: if the true MTBF were
any lower than MTBF, e, We would have seen at |east one failure

during T hours of test with probability at least 1-« . Therefore, we are

100x%(1- e )% confident that the true MTBF is not lower than
MTBF ower-

Dataplot/EXCEL Calculation of Confidence Intervals

A lower 100x(1- ¢z /2)% confidence bound for the MTBF is given by

LET LOWER = T*2/CHSPPF( [1- £ /2], [2* (r+1)])

where T isthe total unit or system test time and r is the total number of
failures.

The upper 100x(1- «x /2)% confidence bound is
LET UPPER = T*2/CHSPPF(x /2,[2*])

and (LOWER, UPPER) isa 100x (1- ¢ ) confidence interval for the true
MTBF.

The same calculations can be performed with EXCEL built-in functions
with the commands
=T*2/CHIINV ([ £ /2], [2*(r+1)]) for the lower bound and
=T*2/CHIINV ( [1- £ /2],[2*r]) for the upper bound.
Note that the Dataplot CHSPPF function requires |eft tail probability

inputs (i.e., /2 for the lower bound and 1- «x /2 for the upper bound),
while the EXCEL CHIINV function requiresright tail inputs (i.e., 1-

£ [2 for the lower bound and ¢z /2 for the upper bound).

Example
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Example
showing
how to
calculate
confidence
limits

Zero fails
confidence
limit
calculation

NIST
SEMATECH

A system was observed for two calendar months of operation, during
which time it was in operation for 800 hours and had 2 failures.

The MTBF estimate is 800/2 = 400 hours. A 90% confidenceinterval is
given by (400x%.3177, 400%x5.6281) = (127, 2251). The sameinterval
could have been obtained using the Dataplot commands

LET LOWER = 1600/CHSPPF(.95,6)
LET UPPER = 1600/CHSPPF(.05,4)

or the EXCEL commands

=1600/CHIINV/(.05,6) for the lower limit
=1600/CHIINV(.95,4) for the upper limit.

Note that 127 isa95% lower limit for the true MTBF. The customer is
usually only concerned with the lower limit and one-sided lower limits
are often used for statements of contractual requirements.

What could we have said if the system had no failures? For a 95% lower
confidence limit on the true MTBF, we either use the O failures factor
from the 90% confidence interval table and calculate 800 x .3338 = 267

or we use T/(-In«z) = 800/(-In.05) = 267.
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8.4. Reliahility Data Analysis

8.4.5. How do you fit system repair rate models?

8.4.5.2.Power law (Duane) model

The Power Brief Review of Power Law Model and Duane Plots

La

(D\lljvane) Recall that the Power Law is a NHPP with the expected number of fails,

model has M(t), and the repair rate, M'(t) = m(t), given by:

been very . b1

successful in Miti=abt™, Mit)=m(t)=abt™ " = .:::t_ﬁ

modeling

industrial The parameter 7 = 1-biscalled the Reliability Growth Slope and

reliability typical industry values for growth slopes during reliability improvement

:jmfrovement tests arein the .3 to .6 range.

ata

If asystem isobserved for afixed time of T hours and failures occur at
timesty, ty, t3, ..., t; (with the start of the test or observation period
being time 0), a Duane plot isa plot of (t; /i) versust; on log-log graph
paper. If the data are consistent with a Power Law model, the pointsin a
Duane Plot will roughly follow a straight line with slope I2 and
intercept (wheret = 1 on the log-log paper) of -log,ga.

MLE's for Estimates for the Power Law M odel

the Power : , : : : :

Law moddl Computer aided graphical estimates can easily be obtained by doing a

are given regressonfitof Y =In(t /i) vsX =Int;. The sSlopeisthe i estimate
and eintercent js the a estimate. The estimate of bis 1- . The Dataplot

command for theregression fitisFIT Y X.

However, better estimates can easily be calculated. These are modified
maximum likelihood estimates (corrected to eliminate bias). The
formulas are given below for afixed time of T hours, and r failures
occurring at timesty, ty, ts, ..., t;.
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Approximate
confidence
bounds for
the MTBF at
end of test
are given

: r . !
T=1- L = -
f v (T B
l_ In
.'_1 | .Ifll_ |
"i;_l_fj:_ ’ llf,-‘*.
o /
Z‘."_l | JrI |

The estimated MTBF at the end of the test (or observation) period is

A

MTBF (AT END OF TEST) = d a

r(l— ,{?) ) rb

Approximate Confidence Boundsfor the MTBF at End of Test

We give an approximate 100x(1- rz )% confidence interval (M, My))
for the MTBF at the end of the test. Note that M| isa100%(1- s+ /2)%

lower bound and M is a 100x(1- ** /2)% upper bound. The formulas
are:

M; =MTBF x- A=

b

My = MTBF x —"

with ==/ 2 isthe upper 100x(1- % /2) percentile point of the standard

normal distribution.
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Dataplot
calculations
for the
Power Law
(Duane)
Model

Dataplot
results
fitting the
Power Law
model to
Case Study
1 failure
data

NIST
SEMATECH

Dataplot Estimates And Confidence Bounds For the Power Law
M odel

Dataplot will calculate p , 4, and the MTBF at the end of test, along

with a 100x(1- z )% confidence interval for the true MTBF at the end of
test (assuming, of course, that the Power Law model holds). The user
needs to pull down the Reliability menu and select "Test" and " Power
Law Model". The times of failure can be entered on the Dataplot spread
sheet. A Dataplot example is shown next.

Case Study 1: Reliability Improvement Test Data Continued

This case study was introduced in section 2, where we did various plots
of the data, including a Duane Plot. The case study was continued when
we discussed trend tests and verified that significant improvement had
taken place. Now we will use Dataplot to complete the case study data
analysis.

The observed failure times were: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours. After entering
thisinformation into the "Reliability/Test/Power Law Model" screen
and the Datapl ot spreadsheet and selecting a significance level of .2 (for
an 80% confidence level), Dataplot gives the following output:

THE RELIABILITY GROWTH SLOPE BETA IS 0.516495
THE A PARAMETER IS 0.2913
THE MTBF AT END OF TEST 1S 310.234

THE DESIRED 80 PERCENT CONFIDENCE INTERVAL IS;
(157.7139 , 548.5565)

AND 157.7139 IS A (ONE-SIDED) 90 PERCENT

LOWER LIMIT

Note: The downloadable package of statistical programs, SEMSTAT,
will also calculate Power Law model statistics and construct Duane
plots. The routines are reached by selecting "Reliability” from the main
menu then the "Exponentia Distribution” and finally "Duane
Analysis'.

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/apr/section4/apr452.htm (3 of 3) [5/1/2006 10:42:34 AM]


http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org/public/resources/stats/Handbook/semstat.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

8.4.5.3. Exponential law model

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.5. How do you fit system repair rate models?

8.4.5.3. Exponential law model

Estimatesof  Recall from section 1 that the Exponential Law refersto a NHPP

the

parameters process with repair rate M'(t) = m(t) = PEar . Thismodel has not been
of the used nearly as much in industrial applications as the Power Law model,
Exponential and it ismore difficult to analyze. Only a brief description will be given
Law model here.

can be

obtained Since the expected number of failuresis given by

from either ort Gt

agraphical  M() = {1/ e and InM(t) = ~ @ln &+ 2 aplot of the cum
procedgre fails versus time of failure on log-linear paper should roughly follow a
or maximum . ) ) 3 . ] ) .
likelihood straight line with slope " . Doing aregression fit of y = In cum fails
estimation versus x = time of failure will provide estimates of the slope P and the

intercept = In g

Alternatively, maximum likelihood estimates can be obtained from the
following pair of equations:

N
E_ﬁr—l

Thefirst equation is non-linear and must be solved iteratively to obtain
the maximum likelihood estimate for ;5 . Then, thisestimateis

substituted into the second equation to solve for the maximum
likelihood estimate for «x .
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8.4.6.How do you estimate reliability using the
Bayesian gamma prior model?

The Bayesian paradigm was introduced in Section 1 and Section 2 described the assumptions
underlying the gamma/exponential system model (including several methods to transform prior
data and engineering judgment into gamma prior parameters "a" and "b"). Finally, we saw in
Section 3 how to use this Bayesian system model to calculate the required test time needed to
confirm asystem MTBF at a given confidence level.

Review of The goal of Bayesian reliability proceduresis to obtain as accurate a posterior distribution as

Bayesian possible, and then use this distribution to calculate failure rate (or MTBF) estimates with
procedure confidence intervals (called credibility intervals by Bayesians). The figure below summarizes
for the the steps in this process.
gamma _
exponential -
system Gamma prior for A
model ) [ Gfa, b)
l“"\.
k| { ",
A
| T
— TR —= Gamma Posterior
Exponential Data Model (given A) . Gatr, b+T)
— " a+,
f(t) = Aexp(-At) . -
b £
o .
N "
R n,
- mr \" P - s v -l 1 e - wd
' "-Iﬂ--!-'i-'.i-'.'.'ﬂ:i\_r-_!!ﬂ.ﬂuﬁ'ﬂ
+
New Data: (rfails ,Test Time T)
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How to
estimate
the MTBF
with
bounds,
based on
the
posterior
distribution

A Bayesian
example
using
EXCEL to
estimate
the MTBF
and
calculate
upper and
lower
bounds

Once the test has been run, and r failures observed, the posterior gamma parameters are:
a=a+r,b=b+T
and a (median) estimate for the MTBF, using EXCEL, is calculated by
= /GAMMAINV(.5, a, (1/ b))
Some people prefer to use the reciprocal of the mean of the posterior distribution as their estimate
for the MTBF. The mean is the minimum mean square error (MSE) estimator of A , but using
the reciprocal of the mean to estimate the MTBF is always more conservative than the "even
money" 50% estimator.
A lower 80% bound for the MTBF is obtained from
= /GAMMAINV(.8, a, (1/ b))
and, in general, alower 100%(1- rx )% lower bound is given by
= 1J/GAMMAINV((1-¢x), &, (1/ b)).
A two sided 100x (1- ¥ )% credibility interval for the MTBF is
[{= UVGAMMAINV/((1-£/2), a, (1 b))} {= YVGAMMAINV((¢z/2), &, (1 b"))}].
Finally, = GAMMADIST((/M), &, (1/b"), TRUE) calculates the probability the MTBF is greater
than M.

Example

A system has completed areliability test aimed at confirming a 600 hour MTBF at an 80%
confidence level. Before the test, agamma prior with a = 2, b = 1400 was agreed upon, based on
testing at the vendor's location. Bayesian test planning cal culations, allowing up to 2 new failures,
called for atest of 1909 hours. When that test was run, there actually were exactly two failures.
What can be said about the system?

The posterior gamma CDF has parameters &' = 4 and b' = 3309. The plot below shows CDF

values on the y-axis, plotted against /4 = MTBF, on the x-axis. By going from probability, on
the y-axis, across to the curve and down to the MTBF, we can read off any MTBF percentile
point we want. (The EXCEL formulas above will give more accurate MTBF percentile values
than can be read off agraph.)
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The MTBF values are shown below:

= YGAMMAINV(.9, 4, (1/ 3309))
= /GAMMAINV(.8, 4, (1/ 3309))
= JGAMMAINV(.5, 4, (1/ 3309))
= YGAMMAINV(.1, 4, (1/ 3309))

The test has confirmed a 600 hour MTBF at 80% confidence, a495 hour MTBF at 90 %
confidence and (495, 1897) is a 90 percent credibility interval for the MTBF. A single number
be 901 hours. Alternatively, you might want to use
the reciprocal of the mean of the posterior distribution (b'/a’) = 3309/4 = 827 hours asasingle

estimate. The reciprocal mean is more conservative = in this caseit is a 57% lower bound, as

(point) estimate for the system MTBF would

=GAMMA DIST((4/3309),4,(1/3309), TRUE)

NIST

SEMATECH [TOOLS & AIDS

[HOME

[SEARCH

has value 495 hours

has value 600 hours (as expected)
has value 901 hours

has value 1897 hours

shows.
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