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8. Assessing Product Reliability

8.1. Introduction

This section introduces the terminology and models that will be used to
describe and quantify product reliability. The terminology, probability
distributions and models used for reliability analysis differ in many
cases from those used in other statistical applications.

Detailed
contents of
Section 1

Introduction 

Why is the assessment and control of product reliability
important? 

Quality versus reliability 1.  

Competitive driving factors2.  

Safety and health considerations 3.  

1.  

What are the basic terms and models used for reliability
evaluation? 

Repairable systems, non-repairable populations and
lifetime distribution models 

1.  

Reliability or survival function 2.  

Failure (or hazard) rate 3.  

"Bathtub" curve 4.  

Repair rate or ROCOF 5.  

2.  

What are some common difficulties with reliability data
and how are they overcome? 

Censoring 1.  

Lack of failures 2.  

3.  

What is "physical acceleration" and how do we model  it? 4.  

What are some common acceleration models? 

Arrhenius 1.  

Eyring 2.  

Other models 3.  

5.  

1.  
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What are the basic lifetime distribution models used for
non-repairable populations? 

Exponential 1.  
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Lognormal 4.  
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What are some basic repair rate models used for repairable
systems? 

Homogeneous Poisson Process (HPP) 1.  

Non-Homogeneous Poisson Process (NHPP) with
power law 

2.  

Exponential law 3.  

7.  

How can you evaluate reliability from the "bottom-  up"
(component failure mode to system failure rates)? 

Competing risk model 1.  

Series model 2.  

Parallel or redundant model 3.  

R out of N model 4.  

Standby model 5.  

Complex systems6.  

8.  

How can you model reliability growth? 

NHPP power law 1.  

Duane plots 2.  

NHPP exponential law 3.  

9.  

How can Bayesian methodology be used for reliability
evaluation? 
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8. Assessing Product Reliability
8.1. Introduction

8.1.1.Why is the assessment and control of
product reliability important?

We depend
on, demand,
and expect
reliable
products

In today's technological world nearly everyone depends upon the
continued functioning of a wide array of complex machinery and
equipment for their everyday health, safety, mobility and economic
welfare. We expect our cars, computers, electrical appliances, lights,
televisions, etc. to function whenever we need them - day after day, year
after year. When they fail the results can be catastrophic: injury, loss of
life and/or costly lawsuits can occur. More often, repeated failure leads
to annoyance, inconvenience and a lasting customer dissatisfaction that
can play havoc with the responsible company's marketplace position. 

Shipping
unreliable
products
can destroy
a company's
reputation

It takes a long time for a company to build up a reputation for reliability,
and only a short time to be branded as "unreliable" after shipping a
flawed product. Continual assessment of new product reliability and
ongoing control of the reliability of everything shipped are critical
necessities in today's competitive business arena. 

8.1.1. Why is the assessment and control of product reliability important?
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.1.Quality versus reliability

Reliability is
"quality
changing
over time" 

The everyday usage term "quality of a product" is loosely taken to
mean its inherent degree of excellence. In industry, this is made more
precise by defining quality to be "conformance to requirements at the
start of use". Assuming the product specifications adequately capture
customer requirements, the quality level can now be precisely
measured by the fraction of units shipped that meet specifications.

A motion
picture
instead of a
snapshot

But how many of these units still meet specifications after a week of
operation? Or after a month, or at the end of a one year warranty
period? That is where "reliability" comes in. Quality is a snapshot at the
start of life and reliability is a motion picture of the day-by-day
operation. Time zero defects are manufacturing mistakes that escaped
final test. The additional defects that appear over time are "reliability
defects" or reliability fallout.

Life
distributions
model
fraction
fallout over
time

The quality level might be described by a single fraction defective. To
describe reliability fallout a probability model that describes the
fraction fallout over time is needed. This is known as the life
distribution model.

8.1.1.1. Quality versus reliability
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.2.Competitive driving factors

Reliability is
a major
economic
factor in
determining a
product's
success

Accurate prediction and control of reliability plays an important role in
the profitability of a product. Service costs for products within the
warranty period or under a service contract are a major expense and a
significant pricing factor. Proper spare part stocking and support
personnel hiring and training also depend upon good reliability fallout
predictions. On the other hand, missing reliability targets may invoke
contractual penalties and cost future business. 

Companies that can economically design and market products that
meet their customers' reliability expectations have a strong competitive
advantage in today's marketplace. 

8.1.1.2. Competitive driving factors
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8. Assessing Product Reliability
8.1. Introduction
8.1.1. Why is the assessment and control of product reliability important?

8.1.1.3.Safety and health considerations

Some failures
have serious
social
consequences
and this should
be taken into
account when
planning
reliability
studies

Sometimes equipment failure can have a major impact on human
safety and/or health. Automobiles, planes, life support equipment,
and power generating plants are a few examples. 

From the point of view of "assessing product reliability", we treat
these kinds of catastrophic failures no differently from the failure
that occurs when a key parameter measured on a manufacturing tool
drifts slightly out of specification, calling for an unscheduled
maintenance action. 

It is up to the reliability engineer (and the relevant customer) to
define what constitutes a failure in any reliability study. More
resource (test time and test units) should be planned for when an
incorrect reliability assessment could negatively impact safety and/or
health.

8.1.1.3. Safety and health considerations
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8. Assessing Product Reliability
8.1. Introduction

8.1.2.What are the basic terms and models
used for reliability evaluation?

Reliability
methods and
terminology
began with
19th century
insurance
companies

Reliability theory developed apart from the mainstream of probability
and statistics, and was used primarily as a tool to help nineteenth
century maritime and life insurance companies compute profitable rates
to charge their customers. Even today, the terms "failure rate" and
"hazard rate" are often used interchangeably. 

The following sections will define some of the concepts, terms, and
models we need to describe, estimate and predict reliability.

8.1.2. What are the basic terms and models used for reliability evaluation?
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.1.Repairable systems, non-repairable
populations and lifetime distribution models

Life
distribution
models
describe how
non-repairable
populations
fail over time

A repairable system is one which can be restored to satisfactory operation by any action,
including parts replacements or changes to adjustable settings. When discussing the rate
at which failures occur during system operation time (and are then repaired) we will
define a Rate Of Occurrence Of Failure (ROCF) or "repair rate". It would be incorrect to
talk about failure rates or hazard rates for repairable systems, as these terms apply only
to the first failure times for a population of non repairable components.  

A non-repairable population is one for which individual items that fail are removed
permanently from the population. While the system may be repaired by replacing failed
units from either a similar or a different population, the members of the original
population dwindle over time until all have eventually failed. 

We begin with models and definitions for non-repairable populations. Repair rates for
repairable populations will be defined in a later section. 

The theoretical population models used to describe unit lifetimes are known as Lifetime
Distribution Models. The population is generally considered to be all of the possible
unit lifetimes for all of the units that could be manufactured based on a particular design
and choice of materials and manufacturing process. A random sample of size n from this
population is the collection of failure times observed for a randomly selected group of n
units.

Any
continuous
PDF defined
only for
non-negative
values can be
a lifetime
distribution
model

A lifetime distribution model can be any probability density function (or PDF) f(t)
defined over the range of time from t = 0 to t = infinity. The corresponding cumulative
distribution function (or CDF) F(t) is a very useful function, as it gives the probability
that a randomly selected unit will fail by time t. The figure below shows the relationship
between f(t) and F(t) and gives three descriptions of F(t). 
 

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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1. F(t) = the area under the PDF f(t) to the left of t.

2. F(t) = the probability that a single randomly chosen new
unit will fail by time t.

3. F(t) = the proportion of the entire population that fails
by time t.

The figure above also shows a shaded area under f(t) between the two times t1 and t2.
This area is [F(t2) - F(t1)] and represents the proportion of the population that fails
between times t1 and t2 (or the probability that a brand new randomly chosen unit will
survive to time t1 but fail before time t2).

Note that the PDF f(t) has only non-negative values and eventually either becomes 0 as t
increases, or decreases towards 0. The CDF F(t) is monotonically increasing and goes
from 0 to 1 as t approaches infinity. In other words, the total area under the curve is
always 1. 

The Weibull
model is a
good example
of a life
distribution

The 2-parameter Weibull distribution is an example of a popular F(t). It has the CDF and
PDF equations given by: 

where γ is the "shape" parameter and α is a scale parameter called the characteristic
life. 

Example: A company produces automotive fuel pumps that fail according to a Weibull
life distribution model with shape parameter γ = 1.5 and scale parameter 8,000 (time
measured in use hours). If a typical pump is used 800 hours a year, what proportion are
likely to fail within 5 years? 

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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Dataplot
Weibull CDF
commands

Solution: The Dataplot commands for the Weibull are: 

SET MINMAX = 1
LET Y = WEICDF(((800*5)/8000),1.5) 

and Dataplot computes Y to be .298 or about 30% of the pumps will fail in the first 5
years.

8.1.2.1. Repairable systems, non-repairable populations and lifetime distribution models
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.2.Reliability or survival function

Survival is the
complementary
event to failure

The Reliability FunctionR(t), also known as the Survival Function
S(t), is defined by: 

R(t) = S(t) = the probability a unit survives beyond time t.

Since a unit either fails, or survives, and one of these two mutually
exclusive alternatives must occur, we have 

R(t) = 1 - F(t),   F(t) = 1 - R(t)

Calculations using R(t) often occur when building up from single
components to subsystems with many components. For example, if
one microprocessor comes from a population with reliability
function Rm(t) and two of them are used for the CPU in a system,
then the system CPU has a reliability function given by 

Rcpu(t) = Rm
2(t)

The reliability
of the system is
the product of
the reliability
functions of the
components

since both must survive in order for the system to survive. This
building up to the system from the individual components will be
discussed in detail when we look at the "Bottom-Up" method. The
general rule is: to calculate the reliability of a system of independent
components, multiply the reliability functions of all the components
together.

8.1.2.2. Reliability or survival function
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.3.Failure (or hazard) rate

The
failure
rate is the
rate at
which the
population
survivors
at any
given
instant are
"falling
over the
cliff"

The failure rate is defined for non repairable populations as the
(instantaneous) rate of failure for the survivors to time t during the next
instant of time. It is a rate per unit of time similar in meaning to reading a
car speedometer at a particular instant and seeing 45 mph. The next instant
the failure rate may change and the units that have already failed play no
further role since only the survivors count. 

The failure rate (or hazard rate) is denoted by h(t) and calculated from 

The failure rate is sometimes called a "conditional failure rate" since the
denominator 1 - F(t) (i.e., the population survivors) converts the expression
into a conditional rate, given survival past time t. 

Since h(t) is also equal to the negative of the derivative of ln{R(t)}, we
have the useful identity:

If we let

be the Cumulative Hazard Function, we then have F(t) = 1 - e-H(t). Two
other useful identities that follow from these formulas are:

8.1.2.3. Failure (or hazard) rate
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It is also sometimes useful to define an average failure rate over any
interval (T1, T2) that "averages" the failure rate over that interval. This rate,
denoted by AFR(T1,T2),  is a single number that can be used as a
specification or target for the population failure rate over that interval. If T1
is 0, it is dropped from the expression. Thus, for example, AFR(40,000)
would be the average failure rate for the population over the first 40,000
hours of operation. 

The formulas for calculating AFR's are:

8.1.2.3. Failure (or hazard) rate
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.4."Bathtub" curve

A plot of
the
failure
rate
over
time for
most
products
yields a
curve
that
looks
like a
drawing
of a
bathtub

If enough units from a given population are observed operating and failing over time, it is
relatively easy to compute week-by-week (or month-by-month) estimates of the failure rate
h(t). For example, if N12 units survive to start the 13th month of life and r13 of them fail
during the next month (or 720 hours) of life, then a simple empirical estimate of h(t) averaged
across the 13th month of life (or between 8640 hours and 9360 hours of age), is given by (r13
/ N12 * 720). Similar estimates are discussed in detail in the section on Empirical Model
Fitting. 

Over many years, and across a wide variety of mechanical and electronic components and
systems, people have calculated empirical population failure rates as units age over time and
repeatedly obtained a graph such as shown below. Because of the shape of this failure rate
curve, it has become widely known as the "Bathtub" curve. 

The initial region that begins at time zero when a customer first begins to use the product is
characterized by a high but rapidly decreasing failure rate. This region is known as the Early
Failure Period (also referred to as Infant Mortality Period, from the actuarial origins of the
first bathtub curve plots). This decreasing failure rate typically lasts several weeks to a few
months. 

Next, the failure rate levels off and remains roughly constant for (hopefully) the majority of
the useful life of the product. This long period of a level failure rate is known as the Intrinsic
Failure Period (also called the Stable Failure Period) and the constant failure rate level is
called the Intrinsic Failure Rate. Note that most systems spend most of their lifetimes
operating in this flat portion of the bathtub curve 

Finally, if units from the population remain in use long enough, the failure rate begins to
increase as materials wear out and degradation failures occur at an ever increasing rate. This
is the Wearout Failure Period. 

8.1.2.4. "Bathtub" curve
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NOTE: The Bathtub Curve also applies (based on much empirical evidence) to Repairable
Systems. In this case, the vertical axis is the Repair Rate or the Rate of Occurrence of
Failures (ROCOF). 

8.1.2.4. "Bathtub" curve
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8. Assessing Product Reliability
8.1. Introduction
8.1.2. What are the basic terms and models used for reliability evaluation?

8.1.2.5.Repair rate or ROCOF

Repair Rate
models are
based on
counting the
cumulative
number of
failures over
time

A different approach is used for modeling the rate of occurrence of
failure incidences for a repairable system. In this chapter, these rates are
called repair rates (not to be confused with the length of time for a
repair, which is not discussed in this chapter). Time is measured by
system power-on-hours from initial turn-on at time zero, to the end of
system life. Failures occur at given system ages and the system is
repaired to a state that may be the same as new, or better, or worse. The
frequency of repairs may be increasing, decreasing, or staying at a
roughly constant rate. 

Let N(t) be a counting function that keeps track of the cumulative
number of failures a given system has had from time zero to time t. N(t)
is a step function that jumps up one every time a failure occurs and stays
at the new level until the next failure. 

Every system will have its own observed N(t) function over time. If we
observed the N(t) curves for a large number of similar systems and
"averaged" these curves, we would have an estimate of M(t) = the
expected number (average number) of cumulative failures by time t for
these systems.

The Repair
Rate (or
ROCOF) is
the mean
rate of
failures per
unit time

The derivative of M(t), denoted m(t), is defined to be the Repair Rate or
the Rate Of Occurrence Of Failures at Time t or ROCOF. 

Models for N(t), M(t) and m(t) will be described in the section on Repair
Rate Models. 

8.1.2.5. Repair rate or ROCOF
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8. Assessing Product Reliability
8.1. Introduction

8.1.3.What are some common difficulties
with reliability data and how are they
overcome?

The
Paradox of
Reliability
Analysis:
The more
reliable a
product is,
the harder it
is to get the
failure data
needed to
"prove" it is
reliable!

There are two closely related problems that are typical with reliability
data and not common with most other forms of statistical data. These
are: 

Censoring (when the observation period ends, not all units have
failed - some are survivors)

●   

Lack of Failures (if there is too much censoring, even though a
large number of units may be under observation, the information
in the data is limited due to the lack of actual failures)

●   

These problems cause considerable practical difficulty when planning
reliability assessment tests and analyzing failure data. Some solutions
are discussed in the next two sections. Typically, the solutions involve
making additional assumptions and using complicated models.

8.1.3. What are some common difficulties with reliability data and how are they overcome?
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8. Assessing Product Reliability
8.1. Introduction
8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.1.Censoring

When not
all units
on test fail
we have
censored
data

Consider a situation in which we are reliability testing n (non repairable) units taken
randomly from a population. We are investigating the population to determine if its failure
rate is acceptable. In the typical test scenario, we have a fixed time T to run the units to see if
they survive or fail. The data obtained are called Censored Type I data.

Censored Type I Data

During the T hours of test we observe r failures (where r can be any number from 0 to n). The
(exact) failure times are t1, t2, ..., tr and there are (n - r) units that survived the entire T-hour
test without failing. Note that T is fixed in advance and r is random, since we don't know how
many failures will occur until the test is run. Note also that we assume the exact times of
failure are recorded when there are failures. 

This type of censoring is also called "right censored" data since the times of failure to the
right (i.e., larger than T) are missing.

Another (much less common) way to test is to decide in advance that you want to see exactly
r failure times and then test until they occur. For example, you might put 100 units on test
and decide you want to see at least half of them fail. Then r = 50, but T is unknown until the
50th fail occurs. This is called Censored Type II data.

Censored Type II Data

We observe t1, t2, ..., tr, where r is specified in advance. The test ends at time T = tr, and (n-r)
units have survived. Again we assume it is possible to observe the exact time of failure for
failed units.

Type II censoring has the significant advantage that you know in advance how many failure
times your test will yield - this helps enormously when planning adequate tests. However, an
open-ended random test time is generally impractical from a management point of view and
this type of testing is rarely seen.

8.1.3.1. Censoring
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Sometimes
we don't
even know
the exact
time of
failure

Readout or Interval Data

Sometimes exact times of failure are not known; only an interval of time in which the failure
occurred is recorded. This kind of data is called Readout or Interval data and the situation is
shown in the figure below:

.

Multicensored Data

In the most general case, every unit observed yields exactly one of the following three types
of information:

a run-time if the unit did not fail while under observation●   

an exact failure time●   

an interval of time during which the unit failed.●   

The units may all have different run-times and/or readout intervals.

Many
special
methods
have been
developed
to handle
censored
data

How do we handle censored data?

Many statistical methods can be used to fit models and estimate failure rates, even with
censored data. In later sections we will discuss the Kaplan-Meier approach, Probability
Plotting, Hazard Plotting, Graphical Estimation, and Maximum Likelihood Estimation.

Separating out Failure Modes

Note that when a data set consists of failure times that can be sorted into several different
failure modes, it is possible (and often necessary) to analyze and model each mode
separately. Consider all failures due to modes other than the one being analyzed as censoring
times, with the censored run-time equal to the time it failed due to the different (independent)
failure mode. This is discussed further in the competing risk section and later analysis
sections.

8.1.3.1. Censoring
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8. Assessing Product Reliability
8.1. Introduction
8.1.3. What are some common difficulties with reliability data and how are they overcome?

8.1.3.2.Lack of failures

Failure data
is needed to
accurately
assess and
improve
reliability -
this poses
problems
when testing
highly
reliable
parts

When fitting models and estimating failure rates from reliability data,
the precision of the estimates (as measured by the width of the
confidence intervals) tends to vary inversely with the square root of the
number of failures observed - not the number of units on test or the
length of the test. In other words, a test where 5 fail out of a total of 10
on test gives more information than a test with 1000 units but only 2
failures. 

Since the number of failures r is critical, and not the sample size n on
test, it becomes increasingly difficult to assess the failure rates of highly
reliable components. Parts like memory chips, that in typical use have
failure rates measured in parts per million per thousand hours, will have
few or no failures when tested for reasonable time periods with
affordable sample sizes. This gives little or no information for
accomplishing the two primary purposes of reliability testing, namely: 

accurately assessing population failure rates●   

obtaining failure mode information to feedback for product
improvement.

●   

Testing at
much higher
than typical
stresses can
yield
failures but
models are
then needed
to relate
these back
to use stress

How can tests be designed to overcome an expected lack of failures?

The answer is to make failures occur by testing at much higher stresses
than the units would normally see in their intended application. This
creates a new problem: how can these failures at higher-than-normal
stresses be related to what would be expected to happen over the course
of many years at normal use stresses? The models that relate high stress
reliability to normal use reliability are called acceleration models. 

8.1.3.2. Lack of failures
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8.1.3.2. Lack of failures
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8. Assessing Product Reliability
8.1. Introduction

8.1.4.What is "physical acceleration" and
how do we model it?

When
changing
stress is
equivalent to
multiplying
time to fail
by a
constant, we
have true
(physical)
acceleration

Physical Acceleration (sometimes called True Acceleration or just
Acceleration) means that operating a unit at high stress (i.e., higher
temperature or voltage or humidity or duty cycle, etc.) produces the
same failures that would occur at typical-use stresses, except that they
happen much quicker. 

Failure may be due to mechanical fatigue, corrosion, chemical reaction,
diffusion, migration, etc. These are the same causes of failure under
normal stress; the time scale is simply different.

An
Acceleration
Factor is the
constant
multiplier
between the
two stress
levels

When there is true acceleration, changing stress is equivalent to
transforming the time scale used to record when failures occur. The
transformations commonly used are linear, which means that
time-to-fail at high stress just has to be multiplied by a constant (the
acceleration factor) to obtain the equivalent time-to-fail at use stress. 

We use the following notation: 

ts = time-to-fail at stress tu = corresponding time-to-fail at use
Fs(t) = CDF at stress Fu(t) = CDF at use
fs(t) = PDF at stress fu(t) = PDF at use
hs(t) = failure rate at stress hu(t) = failure rate at use

Then, an acceleration factor AF between stress and use means the
following relationships hold: 

Linear Acceleration Relationships

Time-to-Fail tu = AF × ts
Failure Probability Fu(t) = Fs(t/AF)

Reliability Ru(t) = Rs(t/AF)

8.1.4. What is "physical acceleration" and how do we model it?
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PDF or Density Function fu(t)  = (1/AF)fs(t/AF)

Failure Rate hu(t) = (1/AF) hs(t/AF)

Each failure
mode has its
own
acceleration
factor

Failure data
should be
separated by
failure mode
when
analyzed, if
acceleration
is relevant

Data from
different
stress cells
have the
same slope
on
probability
paper (if
there is
acceleration)

Note: Acceleration requires that there be a stress dependent physical
process causing change or degradation that leads to failure. In general,
different failure modes will be affected differently by stress and have
different acceleration factors. Therefore, it is unlikely that a single
acceleration factor will apply to more than one failure mechanism. In
general, different failure modes will be affected differently by stress
and have different acceleration factors. Separate out different types of
failure when analyzing failure data. 

Also, a consequence of the linear acceleration relationships shown
above (which follows directly from "true acceleration") is the
following: 

The Shape Parameter for the key life distribution models
(Weibull, Lognormal) does not change for units operating
under different stresses. Plots on probability paper of data
from different stress cells will line up roughly parallel.

These distributions and probability plotting will be discussed in later
sections.

8.1.4. What is "physical acceleration" and how do we model it?
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8. Assessing Product Reliability
8.1. Introduction

8.1.5.What are some common acceleration
models?

Acceleration
models
predict time
to fail as a
function of
stress

Acceleration factors show how time-to-fail at a particular operating
stress level (for one failure mode or mechanism) can be used to predict
the equivalent time to fail at a different operating stress level. 

A model that predicts time-to-fail as a function of stress would be even
better than a collection of acceleration factors. If we write tf = G(S),
with G(S) denoting the model equation for an arbitrary stress level S,
then the acceleration factor between two stress levels S1 and S2 can be
evaluated simply by AF = G(S1)/G(S2). Now we can test at the higher
stress S2, obtain a sufficient number of failures to fit life distribution
models and evaluate failure rates, and use the Linear Acceleration
Relationships Table to predict what will occur at the lower use stress
S1. 

A model that predicts time-to-fail as a function of operating stresses is
known as an acceleration model. 

Acceleration
models are
often derived
from physics
or kinetics
models
related to the
failure
mechanism

Acceleration models are usually based on the physics or chemistry
underlying a particular failure mechanism. Successful empirical
models often turn out to be approximations of complicated physics or
kinetics models, when the theory of the failure mechanism is better
understood. The following sections will consider a variety of powerful
and useful models: 

Arrhenius●   

Eyring●   

Other Models●   

8.1.5. What are some common acceleration models?
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8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.1.Arrhenius

The
Arrhenius
model
predicts
failure
acceleration
due to
temperature
increase

One of the earliest and most successful acceleration models predicts
how time-to-fail varies with temperature. This empirically based model
is known as the Arrhenius equation. It takes the form 

with T denoting temperature measured in degrees Kelvin (273.16 +
degrees Celsius) at the point when the failure process takes place and k
is Boltzmann's constant (8.617 x 10-5 in ev/K). The constant A is a
scaling factor that drops out when calculating acceleration factors, with 

H (pronounced "Delta H") denoting the activation energy, which is
the critical parameter in the model. 

The
Arrhenius
activation
energy, 

H, is all
you need to
know to
calculate
temperature
acceleration

The value of H depends on the failure mechanism and the materials
involved, and typically ranges from .3 or .4 up to 1.5, or even higher.
Acceleration factors between two temperatures increase exponentially
as H increases. 

The acceleration factor between a higher temperature T2 and a lower
temperature T1 is given by

Using the value of k given above, this can be written in terms of T in
degrees Celsius as 

8.1.5.1. Arrhenius
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Note that the only unknown parameter in this formula is H. 

Example: The acceleration factor between 25°C and 125°C is 133 if 
H = .5 and 17,597 if H = 1.0. 

The Arrhenius model has been used successfully for failure mechanisms
that depend on chemical reactions, diffusion processes or migration
processes. This covers many of the non mechanical (or non material
fatigue) failure modes that cause electronic equipment failure. 

8.1.5.1. Arrhenius

http://www.itl.nist.gov/div898/handbook/apr/section1/apr151.htm (2 of 2) [5/1/2006 10:41:27 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.2.Eyring

The Eyring
model has a
theoretical
basis in
chemistry
and quantum
mechanics
and can be
used to
model
acceleration
when many
stresses are
involved

Henry Eyring's contributions to chemical reaction rate theory have led
to a very general and powerful model for acceleration known as the
Eyring Model. This model has several key features: 

It has a theoretical basis from chemistry and quantum mechanics.●   

If a chemical process (chemical reaction, diffusion, corrosion,
migration, etc.) is causing degradation leading to failure, the
Eyring model describes how the rate of  degradation varies with
stress or, equivalently, how time to failure varies with stress.

●   

The model includes temperature and can be expanded to include
other relevant stresses.

●   

The temperature term by itself is very similar to the Arrhenius
empirical model, explaining why that model has been so
successful in establishing the connection between the H
parameter and the quantum theory concept of "activation energy
needed to cross an energy barrier and initiate a reaction".

●   

The model for temperature and one additional stress takes the general
form: 

for which S1 could be some function of voltage or current or any other

relevant stress and the parameters , H, B, and C determine
acceleration between stress combinations. As with the Arrhenius Model,
k is Boltzmann's constant and temperature is in degrees Kelvin. 

If we want to add an additional non-thermal stress term, the model
becomes 

8.1.5.2. Eyring
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and as many stresses as are relevant can be included by adding similar
terms.

Models with
multiple
stresses
generally
have no
interaction
terms -
which means
you can
multiply
acceleration
factors due
to different
stresses

Note that the general Eyring model includes terms that have stress and
temperature interactions (in other words, the effect of changing
temperature varies, depending on the levels of other stresses). Most
models in actual use do not include any interaction terms, so that the
relative change in acceleration factors when only one stress changes
does not depend on the level of the other stresses. 

In models with no interaction, you can compute acceleration factors for
each stress and multiply them together. This would not be true if the
physical mechanism required interaction terms - but, at least to first
approximations, it seems to work for most examples in the literature. 

The Eyring
model can
also be used
to model
rate of
degradation
leading to
failure as a
function of
stress

Advantages of the Eyring Model
Can handle many stresses.●   

Can be used to model degradation data as well as failure data.●   

The H parameter has a physical meaning and has been studied
and estimated for many well known failure mechanisms and
materials.

●   

In practice,
the Eyring
Model is
usually too
complicated
to use in its
most general
form and
must be
"customized"
or simplified
for any
particular
failure
mechanism

Disadvantages of the Eyring Model
Even with just two stresses, there are 5 parameters to estimate.
Each additional stress adds 2 more unknown parameters.

●   

Many of the parameters may have only a second-order effect. For
example, setting   = 0 works quite well since the temperature
term then becomes the same as in the Arrhenius model. Also, the
constants C and E are only needed if there is a significant
temperature interaction effect with respect to the other stresses.

●   

The form in which the other stresses appear is not specified by
the general model and may vary according to the particular
failure mechanism. In other words, S1 may be voltage or ln
(voltage) or some other function of voltage.

●   

Many well-known models are simplified versions of the Eyring model
with appropriate functions of relevant stresses chosen for S1 and S2.

8.1.5.2. Eyring
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Some of these will be shown in the Other Models section. The trick is to
find the right simplification to use for a particular failure mechanism.

8.1.5.2. Eyring
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8. Assessing Product Reliability
8.1. Introduction
8.1.5. What are some common acceleration models?

8.1.5.3.Other models

Many useful 1,
2 and 3 stress
models are
simple Eyring
models. Six
are described

This section will discuss several acceleration models whose
successful use has been described in the literature. 

The (Inverse) Power Rule for Voltage●   

The Exponential Voltage Model●   

Two Temperature/Voltage Models●   

The Electromigration Model●   

Three Stress Models (Temperature, Voltage and Humidity)●   

The Coffin-Manson Mechanical Crack Growth Model●   

The (Inverse) Power Rule for Voltage

This model, used for capacitors, has only voltage dependency and
takes the form: 

This is a very simplified Eyring model with , H, and C all 0, and S

= lnV, and  = -B.

The Exponential Voltage Model

In some cases, voltage dependence is modeled better with an
exponential model:

Two Temperature/Voltage Models

Temperature/Voltage models are common in the literature and take
one of the two forms given below:

8.1.5.3. Other models
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Again, these are just simplified two stress Eyring models with the
appropriate choice of constants and functions of voltage. 

The Electromigration Model

Electromigration is a semiconductor failure mechanism where open
failures occur in metal thin film conductors due to the movement of
ions toward the anode. This ionic movement is accelerated high
temperatures and high current density. The (modified Eyring) model
takes the form 

with J denoting the current density. H is typically between .5 and
1.2 electron volts, while an n around 2 is common. 

Three-Stress Models (Temperature, Voltage and Humidity)

Humidity plays an important role in many failure mechanisms that
depend on corrosion or ionic movement. A common 3-stress model
takes the form 

Here RH is percent relative humidity. Other obvious variations on this
model would be to use an exponential voltage term and/or an
exponential RH term.

Even this simplified Eyring 3-stress model has 4 unknown parameters
and an extensive experimental setup would be required to fit the
model and calculate acceleration factors.

8.1.5.3. Other models
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The
Coffin-Manson
Model is a
useful
non-Eyring
model for
crack growth
or material
fatigue

The Coffin-Manson Mechanical Crack Growth Model

Models for mechanical failure, material fatigue or material
deformation are not forms of the Eyring model. These models 
typically have terms relating to cycles of stress or frequency of use or
change in temperatures. A model of this type known as the (modified)
Coffin-Manson model has been used successfully to model crack
growth in solder and other metals due to repeated temperature cycling
as equipment is turned on and off. This model takes the form 

with 

Nf = the number of cycles to fail●   

f = the cycling frequency●   

T = the temperature range during a cycle●   

and G(Tmax) is an Arrhenius term evaluated at the maximum
temperature reached in each cycle.

Typical values for the cycling frequency exponent  and the
temperature range exponent  are around -1/3 and 2, respectively

(note that reducing the cycling frequency reduces the number of

cycles to failure). The H activation energy term in G(Tmax) is
around 1.25.

8.1.5.3. Other models
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8. Assessing Product Reliability
8.1. Introduction

8.1.6.What are the basic lifetime
distribution models used for
non-repairable populations?

A handful of
lifetime
distribution
models have
enjoyed
great
practical
success

There are a handful of parametric models that have successfully served
as population models for failure times arising from a wide range of
products and failure mechanisms. Sometimes there are probabilistic
arguments based on the physics of the failure mode that tend to justify
the choice of model. Other times the model is used solely because of its 
empirical success IN fitting actual failure data. 

Seven models will be described in this section: 

Exponential1.  

Weibull2.  

Extreme Value 3.  

Lognormal4.  

Gamma 5.  

Birnbaum-Saunders6.  

Proportional hazards7.  

8.1.6. What are the basic lifetime distribution models used for non-repairable populations?
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.1.Exponential

Formulas and Plots●   

Uses of the Exponential Distribution Model●   

DATAPLOT and EXCEL Functions for the Exponential●   

All the key
formulas
for using
the
exponential
model 

Formulas and Plots

The exponential model, with only one unknown parameter, is the simplest of all life
distribution models. The key equations for the exponential are shown below:

Note that the failure rate reduces to the constant  for any time. The exponential distribution
is the only distribution to have a constant failure rate. Also, another name for the exponential

mean is the Mean Time To Fail or MTTF and we have MTTF = 1/ . 

The Cum Hazard function for the exponential is just the integral of the failure rate or H(t) =

t.

The PDF for the exponential has the familiar shape shown below.

8.1.6.1. Exponential
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The
Exponential
distribution
'shape'

The
Exponential
CDF

8.1.6.1. Exponential
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Below is an example of typical exponential lifetime data displayed in Histogram form with
corresponding exponential PDF drawn through the histogram.

Histogram
of
Exponential
Data

The
Exponential
models the
flat portion
of the
"bathtub"
curve -
where most
systems
spend most
of their
'lives'

Uses of the Exponential Distribution Model
Because of its constant failure rate property, the exponential distribution is an excellent
model for the long flat "intrinsic failure" portion of the Bathtub Curve. Since most
components and systems spend most of their lifetimes in this portion of the Bathtub
Curve, this justifies frequent use of the exponential distribution (when early failures or
wear out is not a concern).

1.  

Just as it is often useful to approximate a curve by piecewise straight line segments, we
can approximate any failure rate curve by week-by-week or month-by-month constant
rates that are the average of the actual changing rate during the respective time
durations. That way we can approximate any model by piecewise exponential
distribution segments patched together.

2.  

Some natural phenomena have a constant failure rate (or occurrence rate) property; for
example, the arrival rate of cosmic ray alpha particles or Geiger counter tics. The
exponential model works well for inter arrival times (while the Poisson distribution
describes the total number of events in a given period). When these events trigger
failures, the exponential life distribution model will naturally apply. 

3.  

8.1.6.1. Exponential
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Dataplot
and EXCEL
functions
for the
Exponential
model

DATAPLOT and EXCEL Functions for the Exponential

The Dataplot commands EXPPDF and EXPCDF calculate the exponential PDF and CDF for

the standardized case with  = 1. To evaluate the PDF and CDF at 100 hours for an

exponential with  = .01, the commands would be 

LET A = EXPPDF(100,0,0.01)
LET B = EXPCDF(100,0,0.01)

and the response would be .003679 for the pdf and .63212 for the cdf. 

Dataplot can do a probability plot of exponential data, normalized so that a perfect
exponential fit is a diagonal line with slope 1. The following commands generate 100 random

exponential observations (  = .01) and generate the probability plot that follows. 

LET Y = EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 100
LET Y = 100*Y
TITLE AUTOMATIC
X1LABEL THEORETICAL (NORMALIZED) VALUE
Y1LABEL DATA VALUE
EXPONENTIAL PROBABILITY PLOT Y

Dataplot
Exponential
probability
plot

EXCEL also has built-in functions for the exponential PDF and CDF. The PDF is given by

EXPONDIST(x, , false) and the CDF is given by EXPONDIST(x, , true). Using 100 for x

and .01 for  will produce the same answers as given by Dataplot.

8.1.6.1. Exponential
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.2.Weibull

Formulas and Plots●   

Uses of the Weibull Distribution Model●   

DATAPLOT and EXCEL Functions for the Weibull●   

Weibull
Formulas

Formulas and Plots

The Weibull is a very flexible life distribution model with two parameters. It has CDF
and PDF and other key formulas given by: 

with  the scale parameter (the Characteristic Life),  (gamma) the Shape
Parameter, and  is the Gamma function with (N) = (N-1)! for integer N.

The Cum Hazard function for the Weibull is the integral of the failure rate or

8.1.6.2. Weibull
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A more general 3-parameter form of the Weibull includes an additional waiting time
parameter µ (sometimes called a shift or location parameter). The formulas for the
3-parameter Weibull are easily obtained from the above formulas by replacing t by (t - µ)
wherever t appears. No failure can occur before µ hours, so the time scale starts at µ, and
not 0. If a shift parameter µ is known (based, perhaps, on the physics of the failure
mode), then all you have to do is subtract µ from all the observed failure times and/or
readout times and analyze the resulting shifted data with a 2-parameter Weibull.

NOTE: Various texts and articles in the literature use a variety of different symbols for
the same Weibull parameters. For example, the characteristic life is sometimes called c
(or  = nu or  = eta) and the shape parameter is also called m (or  = beta). To add to

the confusion, EXCEL calls the characteristic life  and the shape  and some authors

even parameterize the density function differently, using a scale parameter 

Special Case: When  = 1, the Weibull reduces to the Exponential Model, with  = 1/

 = the mean time to fail (MTTF).

Depending on the value of the shape parameter , the Weibull model can empirically fit
a wide range of data histogram shapes. This is shown by the PDF example curves below.

Weibull
data
'shapes'

8.1.6.2. Weibull
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From a failure rate model viewpoint, the Weibull is a natural extension of the constant
failure rate exponential model since the Weibull has a polynomial failure rate with
exponent {  - 1}. This makes all the failure rate curves shown in the following plot
possible.

Weibull
failure rate
'shapes'

8.1.6.2. Weibull
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The Weibull
is very
flexible and
also has
theoretical
justification
in many
applications

Uses of the Weibull Distribution Model
Because of its flexible shape and ability to model a wide range of failure rates, the
Weibull has been used successfully in many applications as a purely empirical
model.

1.  

The Weibull model can be derived theoretically as a form of Extreme Value
Distribution, governing the time to occurrence of the "weakest link" of many
competing failure processes. This may explain why it has been so successful in
applications such as capacitor, ball bearing, relay and material strength failures.

2.  

Another special case of the Weibull occurs when the shape parameter is 2. The
distribution is called the Rayleigh Distribution and it turns out to be the theoretical
probability model for the magnitude of radial error when the x and y coordinate
errors are independent normals with 0 mean and the same standard deviation.

3.  

8.1.6.2. Weibull
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Dataplot
and EXCEL
functions
for the
Weibull

DATAPLOT and EXCEL Functions for the Weibull

The following commands in Dataplot will evaluate the PDF and CDF of a Weibull at
time T, with shape  and characteristic life .

SET MINMAX 1
LET PDF = WEIPDF(T, ,0, ),

LET CDF = WEICDF(T, ,0, )

For example, if T = 1000,  = 1.5 and  = 5000, the above commands will produce a
PDF of .000123 and a CDF of .08556.

NOTE: Whenever using Dataplot for a Weibull analysis, you must start by setting
MINMAX equal to 1.

To generate Weibull random numbers from a Weibull with shape parameter 1.5 and
characteristic life 5000, use the following commands:

SET MINMAX 1
LET GAMMA = 1.5
LET SAMPLE = WEIBULL RANDOM NUMBERS FOR I = 1 1 100
LET SAMPLE = 5000*SAMPLE

Next, to see how well these "random Weibull data points" are actually fit by a Weibull,
we plot the points on "Weibull" paper to check whether they line up following a straight
line. The commands (following the last commands above) are:

X1LABEL LOG TIME
Y1LABEL CUM PROBABILITY
WEIBULL PLOT SAMPLE

The resulting plot is shown below. Note the log scale used is base 10.

Dataplot
Weibull
Probability
Plot

8.1.6.2. Weibull
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EXCEL also has Weibull CDF and PDF built in functions. EXCEL calls the shape

parameter  = alpha and the characteristic life  = beta. The following command
evaluates the Weibull PDF for time 1000 when the shape is 1.5 and the characteristic life
is 5000:

WEIBULL(1000,1.5,5000,FALSE)

For the corresponding CDF

WEIBULL(1000,1.5,5000,TRUE)

The returned values (.000123 and .085559, respectively) are the same as calculated by
Dataplot.

8.1.6.2. Weibull
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.3.Extreme value distributions

Description, Formulas and Plots●   

Uses of the Extreme Value Distribution Model●   

DATAPLOT Functions for the Extreme Value Distribution●   

The Extreme
Value
Distribution
usually
refers to the
distribution
of the
minimum of
a large
number of
unbounded
random
observations

Description, Formulas and Plots

We have already referred to Extreme Value Distributions when describing the uses of the
Weibull distribution. Extreme value distributions are the limiting distributions for the
minimum or the maximum of a very large collection of random observations from the same
arbitrary distribution. Gumbel (1958) showed that for any well-behaved initial distribution
(i.e., F(x) is continuous and has an inverse), only a few models are needed, depending on
whether you are interested in the maximum or the minimum, and also if the observations are
bounded above or below. 

In the context of reliability modeling, extreme value distributions for the minimum are
frequently encountered. For example, if a system consists of n identical components in series,
and the system fails when the first of these components fails, then system failure times are the
minimum of  n random component failure times. Extreme value theory says that, independent
of the choice of component model, the system model will approach a Weibull as n becomes
large. The same reasoning can also be applied at a component level, if the component failure
occurs when the first of many similar competing failure processes reaches a critical level. 

The distribution often referred to as the Extreme Value Distribution (Type I) is the limiting
distribution of the minimum of a large number of unbounded identically distributed random
variables. The PDF and CDF are given by:

Extreme
Value
Distribution
formulas
and PDF
shapes

If the x values are bounded below (as is the case with times of failure) then the limiting
distribution is the Weibull. Formulas and uses of the Weibull have already been discussed. 

PDF Shapes for the (minimum) Extreme Value Distribution (Type I) are shown in the
following figure. 

8.1.6.3. Extreme value distributions
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The natural
log of
Weibull
data is
extreme
value data

Uses of the Extreme Value Distribution Model
In any modeling application for which the variable of interest is the minimum of many
random factors, all of which can take positive or negative values, try the extreme value
distribution as a likely candidate model. For lifetime distribution modeling, since failure
times are bounded below by zero, the Weibull distribution is a better choice. 

1.  

The Weibull distribution and the extreme value distribution have a useful mathematical
relationship. If t1, t2, ...,tn are a sample of random times of fail from a Weibull
distribution, then ln t1, ln t2, ...,ln tn are random observations from the extreme value
distribution. In other words, the natural log of a Weibull random time is an extreme
value random observation. 

Because of this relationship, computer programs and graph papers designed for the
extreme value distribution can be used to analyze Weibull data. The situation exactly
parallels using normal distribution programs to analyze lognormal data, after first taking
natural logarithms of the data points.

2.  

8.1.6.3. Extreme value distributions
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Dataplot
commands
for the
extreme
value
distribution

DATAPLOT for the Extreme Value Distribution

Assume µ = ln 200,000 = 12.206 and  = 1/2 = .5. The extreme value distribution with these

parameters could be obtained by taking natural logarithms of data from a Weibull population

with characteristic life  = 200,000 and shape  = 2. We will use Dataplot to evaluate PDF's,
CDF's and generate random numbers from this distribution. Note that you must first set
MINMAX to 1 in order to do (minimum) extreme value type I calculations. 

SET MINMAX 1
LET BET = .5
LET M = LOG(200000)
LET X = DATA 5 8 10 12 12.8
LET PD = EV1PDF(X, M, BET)
LET CD = EV1CDF(X, M, BET)

Dataplot will calculate PDF and CDF values corresponding to the points 5, 8, 10, 12, 12.8. The
PDF's are .110E-5, .444E-3, .024, .683 and .247. The CDF's are .551E-6, .222E-3, .012, .484
and .962. 

Finally, we generate 100 random numbers from this distribution and construct an extreme
value distribution probability plot as follows: 

LET SAM = EXTREME VALUE TYPE 1 RANDOM NUMBERS FOR I = 1 1
100
LET SAM = (BET*SAMPLE) + M
EXTREME VALUE TYPE 1 PROBABILITY PLOT SAM

Data from an extreme value distribution will line up approximately along a straight line when
this kind of plot is constructed. The slope of the line is an estimate of , and the "y-axis"

8.1.6.3. Extreme value distributions
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value on the line corresponding to the "x-axis" 0 point is an estimate of µ. For the graph above,
these turn out to be very close to the actual values of  and µ.

8.1.6.3. Extreme value distributions
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.4.Lognormal

Formulas and Plots

Uses of the Lognormal Distribution Model●   

DATAPLOT and EXCEL Functions for the Lognormal●   

Lognormal
Formulas and
relationship
to the normal
distribution

Formulas and Plots

The lognormal life distribution, like the Weibull, is a very flexible model that can empirically
fit many types of failure data. The two parameter form has parameters  = the shape
parameter and T50 = the median (a scale parameter). 

Note: If time to failure, tf, has a lognormal distribution, then the (natural) logarithm of time to

failure has a normal distribution with mean µ = ln T50 and standard deviation . This makes
lognormal data convenient to work with; just take natural logarithms of all the failure times and
censoring times and analyze the resulting normal data. Later on, convert back to real time and
lognormal parameters using  as the lognormal shape and T50 = eµ as the (median) scale
parameter.

Below is a summary of the key formulas for the lognormal. 

8.1.6.4. Lognormal
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Note: A more general 3-parameter form of the lognormal includes an additional waiting time

parameter  (sometimes called a shift or location parameter). The formulas for the

3-parameter lognormal are easily obtained from the above formulas by replacing t by (t - )

wherever t appears. No failure can occur before  hours, so the time scale starts at  and not 0.

If a shift parameter  is known (based, perhaps, on the physics of the failure mode), then all

you have to do is subtract  from all the observed failure times and/or readout times and
analyze the resulting shifted data with a 2-parameter lognormal. 

Examples of lognormal PDF and failure rate plots are shown below. Note that lognormal shapes

for small sigmas are very similar to Weibull shapes when the shape parameter  is large and

large sigmas give plots similar to small Weibull 's. Both distributions are very flexible and it
is often difficult to choose which to use based on empirical fits to small samples of (possibly
censored) data.

8.1.6.4. Lognormal
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Lognormal
data 'shapes'

Lognormal
failure rate
'shapes'

8.1.6.4. Lognormal
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A very
flexible model
that also can
apply
(theoretically)
to many
degradation
process
failure modes

Uses of the Lognormal Distribution Model
As shown in the preceding plots, the lognormal PDF and failure rate shapes are flexible
enough to make the lognormal a very useful empirical model. In addition, the relationship
to the normal (just take natural logarithms of all the data and time points and you have
"normal" data) makes it easy to work with mathematically, with many good software
analysis programs available to treat normal data.

1.  

The lognormal model can be theoretically derived under assumptions matching many
failure degradation processes common to electronic (semiconductor) failure mechanisms.
Some of these are: corrosion, diffusion, migration, crack growth, electromigration, and,
in general, failures resulting from chemical reactions or processes. That does not mean
that the lognormal is always the correct model for these mechanisms, but it does perhaps
explain why it has been empirically successful in so many of these cases. 

A brief sketch of the theoretical arguments leading to a lognormal model follows.
 

Applying the Central Limit Theorem to small additive errors in the log
domain and justifying a normal model is equivalent to justifying the
lognormal model in real time when a process moves towards failure based
on the cumulative effect of many small "multiplicative" shocks. More
precisely, if at any instant in time a degradation process undergoes a small
increase in the total amount of degradation that is proportional to the current
total amount of degradation, then it is reasonable to expect the time to failure
(i.e., reaching a critical amount of degradation) to follow a lognormal
distribution (Kolmogorov, 1941).

A more detailed description of the multiplicative degradation argument appears in a later
section.

2.  

Dataplot and
EXCEL
lognormal
functions

DATAPLOT and EXCEL Functions for the Lognormal

The following commands in Dataplot will evaluate the PDF and CDF of a lognormal at time T,
with shape and median life (scale parameter) T50: 

LET PDF = LGNPDF(T, T50, )

LET CDF = LGNCDF((T, T50, )

For example, if T = 5000 and  = .5 and T50 = 20,000, the above commands will produce a

PDF of .34175E-5 and a CDF of .002781 and a failure rate of PDF/(1-CDF) = .3427 %/K. 

To generate 100 lognormal random numbers from a lognormal with shape .5 and median life
20,000, use the following commands: 

LET SAMPLE = LOGNORMAL RANDOM NUMBERS FOR I = 1 1 100
LET SAMPLE = 20,000*(SAMPLE**.5)

Next, to see how well these random lognormal data points are fit by a lognormal, we plot them
using the lognormal probability plot command. First we have to set  = SD to .5 (see PPCC
PLOT for how to estimate the value of SD from actual data). 

LET SIGMA = .5
X1LABEL EXPECTED (NORMALIZED) VALUES
Y1LABEL  TIME
LOGNORMAL PROBABILITY PLOT SAMPLE

8.1.6.4. Lognormal
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The resulting plot is below. Points that line up approximately on a straight line indicates a good
fit to a lognormal (with shape SD = .5). The time that corresponds to the (normalized) x-axis
T50 of 1 is the estimated T50  according to the data. In this case it is close to 20,000, as expected.

Dataplot
lognormal
probability
plot

Finally, we note that EXCEL has a built in function to calculate the lognormal CDF. The
command is =LOGNORMDIST(5000,9.903487553,0.5) to evaluate the CDF of a lognormal at
time T = 5000 with  = .5 and T50 = 20,000 and ln T50 = 9.903487553. The answer returned is
.002781. There is no lognormal PDF function in EXCEL. The normal PDF can be used as
follows: 

=(1/5000)*NORMDIST(8.517193191,9.903487553,0.5,FALSE)

where 8.517193191 is ln 5000 and "FALSE" is needed to get PDF's instead of CDF's. The
answer returned is 3.42E-06.

8.1.6.4. Lognormal
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.5.Gamma

Formulas and Plots ●   

Uses of the Gamma Distribution Model ●   

DATAPLOT and EXCEL Functions for the Gamma●   

Formulas
for the
gamma
model

Formulas and Plots

There are two ways of writing (parameterizing) the gamma distribution that are common in the
literature. In addition, different authors use different symbols for the shape and scale parameters.

Below we show three ways of writing the gamma, with a =  = , the "shape" parameter, and b

=1/ , the scale parameter. The first choice of parameters (a,b) will be the most convenient for

later applications of the gamma. EXCEL uses  while Dataplot uses . 

8.1.6.5. Gamma
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The
exponential
is a special
case of the
gamma

Note: When a = 1, the gamma reduces to an exponential distribution with b = . 

Another well-known statistical distribution, the Chi-Square, is also a special case of the gamma.
A Chi-Square distribution with n degrees of freedom is the same as a gamma with a = n/2 and b =
.5 (or  = 2). 

The following plots give examples of gamma PDF, CDF and failure rate shapes.

Shapes for
Gamma
data

8.1.6.5. Gamma
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Gamma
failure rate
shapes

The
gamma is
used in
"Standby"
system
models and
also for
Bayesian
reliability
analysis

Uses of the Gamma Distribution Model
The gamma is a flexible life distribution model that may offer a good fit to some sets of
failure data. It is not, however, widely used as a life distribution model for common failure
mechanisms.

1.  

The gamma does arise naturally as the time-to-first fail distribution for a system with
standby exponentially distributed backups. If there are n-1 standby backup units and the

system and all backups have exponential lifetimes with parameter , then the total lifetime

has a gamma distribution with a = n and b = . Note: when a is a positive integer, the
gamma is sometimes called an Erlang distribution. The Erlang distribution is used
frequently in queuing theory applications. 

2.  

A common use of the gamma model occurs in Bayesian reliability applications. When a

system follows an HPP (exponential) model with a constant repair rate , and it is desired

to make use of prior information about possible values of , a gamma Bayesian prior for

 is a convenient and popular choice. 

3.  

8.1.6.5. Gamma
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Dataplot
and
EXCEL
gamma
functions

Dataplot and EXCEL Functions for the Gamma

To calculate the PDF, CDF, Reliability and failure rate at time t for a gamma with parameters a

and b = 1/ , use the following Dataplot statements: 

LET PDF = GAMPDF(t,a,0,b)
LET CDF = GAMCDF(t,a,0,b)
LET REL = 1-CDF
LET FR = PDF/REL

Using an example solved in the section on standby models, if a = 2,  b = 1/30 and t = 24 months,
the statements are:
 

LET PDF = GAMPDF(24, 2, 0, 30) response is .01198
LET CDF = GAMCDF(24, 2, 0, 30) response is .1912
LET REL = 1-CDF response is .8088
LET FR=PDF/REL response is .0148

To generate random gamma data we first have to set the "a" parameter (called "gamma" by
Dataplot). The following commands generate 100 gamma data points chosen randomly from a
gamma distribution with parameters a and b: 

LET GAMMA = a
LET DATA = GAMMA RANDOM NUMBERS FOR I = 1 1 100
LET DATA = (1/b)*DATA

For the above example this becomes

LET GAMMA = 2
LET DATA = GAMMA RANDOM NUMBERS FOR I = 1 1 100
LET DATA = 30*DATA

Continuing this example, we can now do a gamma probability plot of the 100 points in DATA.
The commands are 

LET GAMMA = 2
X1LABEL EXPECTED (NORMALIZED) VALUES
Y1LABEL TIME
GAMMA PROBABILITY PLOT DATA

The resulting plot is shown below. 

8.1.6.5. Gamma
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Note that the value of gamma can be estimated using a PPCC plot.

EXCEL also has built-in functions to evaluate the gamma pdf and cdf. The syntax is: 

=GAMMADIST(t,a,1/b,FALSE) for the PDF
=GAMMADIST(t,a,1/b,TRUE) for the CDF

8.1.6.5. Gamma
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.6.Fatigue life (Birnbaum-Saunders)

A model
based on
cycles of
stress
causing
degradation
or crack
growth

In 1969, Birnbaum and Saunders described a life distribution model that could be derived
from a physical fatigue process where crack growth causes failure. Since one of the best ways
to choose a life distribution model is to derive it from a physical/statistical argument that is
consistent with the failure mechanism, the Birnbaum-Saunders Fatigue Life Distribution is
worth considering. 

Formulas and Plots for the Birnbaum-Saunders Model●   

Derivation and Use of the Birnbaum-Saunders Model●   

Dataplot Functions for the Birnbaum-Saunders Model●   

Formulas and Plots for the Birnbaum-Saunders Model

Formulas
and shapes
for the
Fatigue
Life model

8.1.6.6. Fatigue life (Birnbaum-Saunders)
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The PDF, CDF, mean and variance for the Birnbaum-Saunders Distribution are shown below.

The parameters are: ,  a shape parameter; µ, a scale parameter. These are the parameters
used in Dataplot, but there are other choices also common in the literature (see the parameters
used for the derivation of the model).

PDF shapes for the model vary from highly skewed and long tailed (small gamma values) to
nearly symmetric and short tailed as gamma increases. This is shown in the figure below.
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Corresponding failure rate curves are shown in the next figure.
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If crack
growth in
each stress
cycle is a
random
amount
independent
of past
cycles of
growth, the
Fatigue
Life mode
model may
apply.

Derivation and Use of the Birnbaum-Saunders Model: 

Consider a material that continually undergoes cycles of stress loads. During each cycle, a
dominant crack grows towards a critical length that will cause failure. Under repeated
application of n cycles of loads, the total extension of the dominant crack can be written as 

and we assume the Yj are independent and identically distributed non-negative random

variables with mean µ and variance . Suppose failure occurs at the N-th cycle, when Wn
first exceeds a constant critical value w. If n is large, we can use a central limit theorem
argument to conclude that 

Since there are many cycles, each lasting a very short time, we can replace the discrete
number of cycles N needed to reach failure by the continuous time tf needed to reach failure.
The cdf F(t) of tf is given by 

8.1.6.6. Fatigue life (Birnbaum-Saunders)

http://www.itl.nist.gov/div898/handbook/apr/section1/apr166.htm (4 of 6) [5/1/2006 10:41:46 AM]



Here  denotes the standard normal cdf. Writing the model with parameters  and  is an
alternative way of writing the Birnbaum-Saunders distribution that is often used      (

, as compared to the way the formulas were parameterized earlier in this
section). 

Note:
The critical assumption in the derivation, from a physical point of view, is that the crack
growth during any one cycle is independent of the growth during any other cycle. Also, the
growth has approximately the same random distribution, from cycle to cycle. This is a very
different situation from the proportional degradation argument used to derive a log normal
distribution model, with the rate of degradation at any point in time depending on the total
amount of degradation that has occurred up to that time. 

This kind of
physical
degradation
is
consistent
with
Miner's
Rule.

The Birnbaum-Saunders assumption, while physically restrictive, is consistent with a
deterministic model from materials physics known as Miner's Rule (Miner's Rule implies that
the damage that occurs after n cycles, at a stress level that produces a fatigue life of N cycles,
is proportional to n/N). So, when the physics of failure suggests Miner's Rule applies, the
Birnbaum-Saunders model is a reasonable choice for a life distribution model.

Dataplot
commands
for the
Fatigue
Life model

Dataplot Functions for the Birnbaum-Saunders Model

The PDF for a Birnbaum-Saunders (Fatigue Life) distribution with parameters µ,  is

evaluated at time t by: 

LET PDF = FLPDF(t, , 0, µ).

The CDF is 

LET CDF = FLCDF(t, , 0, µ).

To generate 100 random numbers, when µ = 5000,  = 2, for example, type the following

Dataplot commands: 

LET GAMMA = 2
LET DATA = FATIGUE LIFE RANDOM NUMBERS FOR 
    I = 1 1 100
LET DATA = 5000*DATA

Finally, we can do a Fatigue Life Probability Plot of the 100 data points in DATA by 

LET GAMMA = 2
FATIGUE LIFE PROBABILITY PLOT DATA

and the points on the resulting plot (shown below) line up roughly on a straight line, as

8.1.6.6. Fatigue life (Birnbaum-Saunders)
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expected for data correctly modeled by the Birnbaum-Saunders distribution. 

Notes
We set GAMMA equal to 2 before doing the probability plot because we knew its
value. If we had real experimental data (with no censoring), first we would run PPCC
to estimate gamma. The command is: FATIGUE LIFE PPCC PLOT DATA. To see the
estimated value of gamma we would type WRITE SHAPE. Then, we would type LET
GAMMA = SHAPE before running the Fatigue Life Probability Plot.

1.  

The slope of the line through the points on the probability plot is an estimate of the
scale parameter µ.

2.  

8.1.6.6. Fatigue life (Birnbaum-Saunders)
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8. Assessing Product Reliability
8.1. Introduction
8.1.6. What are the basic lifetime distribution models used for non-repairable populations?

8.1.6.7.Proportional hazards model

The
proportional
hazards
model is often
used in
survival
analysis
(medical
testing)
studies. It is
not used
much with
engineering
data

The proportional hazards model, proposed by Cox (1972), has been
used primarily in medical testing analysis, to model the effect of
secondary variables on survival. It is more like an acceleration model
than a specific life distribution model, and its strength lies in its ability
to model and test many inferences about survival without making any
specific assumptions about the form of the life distribution model. 

This section will give only a brief description of the proportional
hazards model, since it has limited engineering applications.

Proportional Hazards Model Assumption

Let z = {x, y, ...} be a vector of 1 or more explanatory variables
believed to affect lifetime. These variables may be continuous (like
temperature in engineering studies, or dosage level of a particular drug
in medical studies) or they may be indicator variables with the value 1
if a given factor or condition is present, and 0 otherwise. 

Let the hazard rate for a nominal (or baseline) set z0 = (x0,y0, ...) of
these variables be given by h0(t), with h0(t) denoting legitimate hazard
function (failure rate) for some unspecified life distribution model.

The
proportional
hazard model
assumes
changing a
stress
variable (or
explanatory
variable) has
the effect of
multiplying
the hazard
rate by a

The proportional hazards model assumes we can write the changed
hazard function for a new value of z as 

hz(t) = g(z)h0(t)

In other words, changing z, the explanatory variable vector, results in a
new hazard function that is proportional to the nominal hazard
function, and the proportionality constant is a function of z, g(z),
independent of the time variable t. 

A common and useful form for f(z) is the Log Linear Model which
has the equation: g(x) = eax for one variable, g(x,y) = eax+by for two
variables, etc. 

8.1.6.7. Proportional hazards model
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constant. Properties and Applications of the Proportional Hazards Model
The proportional hazards model is equivalent to the acceleration
factor concept if and only if the life distribution model is a
Weibull (which includes the exponential model, as a special

case). For a Weibull with shape parameter , and an
acceleration factor AF between nominal use fail time t0 and high

stress fail time ts (with t0 = AFts) we have g(s) = AF . In other

words, hs(t) = AF h0(t).

1.  

Under a log-linear model assumption for g(z), without any
further assumptions about the life distribution model, it is
possible to analyze experimental data and compute maximum
likelihood estimates and use likelihood ratio tests to determine
which explanatory variables are highly significant. In order to do
this kind of analysis, however, special software is needed. 

2.  

More details on the theory and applications of the proportional hazards
model may be found in Cox and Oakes (1984). 
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8. Assessing Product Reliability
8.1. Introduction

8.1.7.What are some basic repair rate
models used for repairable systems?

Models for
repair rates
of
repairable
systems

N(t), M(t) and m(t) were defined in the section on Repair Rates. Repair
rate models are defined by first picking a functional form for M(t), the
expected number of cumulative failures by time t. Taking the derivative
of this gives the repair rate model m(t). 

In the next three sections we will describe three models, of increasing
complexity, for M(t). They are: the Homogeneous Poisson Process, the
Non-Homogeneous Poisson Process following a Power law, and the
Non-Homogeneous Poisson Process following an Exponential law. 

8.1.7. What are some basic repair rate models used for repairable systems?
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.1.Homogeneous Poisson Process
(HPP)

Repair rate
(ROCOF)
models and
formulas

The simplest useful model for M(t) is M(t) = t and the repair rate (or

ROCOF) is the constant m(t) = . This model comes about when the
interarrival times between failures are independent and identically

distributed according to the exponential distribution, with parameter .
This basic model is also known as a Homogeneous Poisson Process
(HPP). The following formulas apply: 

8.1.7.1. Homogeneous Poisson Process (HPP)
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HPP model
fits flat
portion of
"bathtub"
curve

Despite the simplicity of this model, it is widely used for repairable
equipment and systems throughout industry. Justification for this comes,
in part, from the shape of the empirical Bathtub Curve. Most systems (or
complex tools or equipment) spend most of their "lifetimes" operating in
the long flat constant repair rate portion of the Bathtub Curve. The HPP
is the only model that applies to that portion of the curve, so it is the
most popular model for system reliability evaluation and reliability test
planning. 

Planning reliability assessment tests (under the HPP assumption) is
covered in a later section, as is estimating the MTBF from system
failure data and calculating upper and lower confidence limits.

Poisson
relationship
and
Dataplot
and EXCEL
functions

Note that in the HPP model, the probability of having exactly k failures
by time T is given by the Poisson distribution with mean T (see

formula for P(N(T) = k) above). This can be evaluated by the Dataplot
expression: 

LET Y = POIPDF(k, T)

or by the EXCEL expression:

POISSON(k, T, FALSE)

8.1.7.1. Homogeneous Poisson Process (HPP)
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.2.Non-Homogeneous Poisson
Process (NHPP) - power law

The repair
rate for a
NHPP
following the
Power law

A flexible model (that has been very successful in many applications)
for the expected number of failures in the first t hours, M(t), is given by
the polynomial 

The repair rate (or ROCOF) for this model is 

The Power
law model is
very flexible
and contains
the HPP
(exponential)
model as a
special case

The HPP model has a the constant repair rate m(t) = . If we substitute

an arbitrary function (t) for , we have a Non Homogeneous

Poisson Process (NHPP) with Intensity Function . If

then we have an NHPP with a Power Law intensity function (the
"intensity function" is another name for the repair rate m(t)).

Because of the polynomial nature of the ROCOF, this model is very

flexible and can model both increasing (b>1 or  < 0) and decreasing

(0 < b < 1 or 0 <  < 1)) failure rates. When b = 1 or  = 0, the model
reduces to the HPP constant repair rate model.

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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Probabilities
of failure for
all NHPP
processes
can easily be
calculated
based on the
Poisson
formula

Probabilities of a given number of failures for the NHPP model are
calculated by a straightforward generalization of the formulas for the
HPP. Thus, for any NHPP 

and for the Power Law model:

The Power
Law model
is also called
the Duane
Model and
the AMSAA
model

Other names for the Power Law model are: the Duane Model and the
AMSAA model. AMSAA stands for the United States Army
Materials System Analysis Activity, where much theoretical work
describing the Power Law model was performed in the 1970's. 

It is also
called a
Weibull
Process - but
this name is
misleading
and should
be avoided

The time to the first fail for a Power Law process has a Weibull
distribution with shape parameter b and characteristic life a. For this
reason, the Power Law model is sometimes called a Weibull Process.
This name is confusing and should be avoided, however, since it mixes
a life distribution model applicable to the lifetimes of a non-repairable
population with a model for the inter-arrival times of failures of a
repairable population.

For any NHPP process with intensity function m(t), the distribution
function (CDF) for the inter-arrival time  to the next failure, given a
failure just occurred at time T, is given by

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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Once a
failure
occurs, the
waiting time
to the next
failure for
an NHPP
has a simple
CDF
formula

In particular, for the Power Law the waiting time to the next failure,
given a failure at time T, has distribution function 

This inter arrival time CDF can be used to derive a simple algorithm for
simulating NHPP Power Law Data.

8.1.7.2. Non-Homogeneous Poisson Process (NHPP) - power law
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8. Assessing Product Reliability
8.1. Introduction
8.1.7. What are some basic repair rate models used for repairable systems?

8.1.7.3.Exponential law

The
Exponential
Law is
another
flexible
NHPP model

An NHPP with ROCOF or intensity function given by 

is said to follow an Exponential Law. This is also called the log-linear
model or the Cox-Lewis model. 

A system whose repair rate follows this flexible model is improving if 
 < 0 and deteriorating if  >0. When  = 0, the Exponential Law

reduces to the HPP constant repair rate model

8.1.7.3. Exponential law
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8. Assessing Product Reliability
8.1. Introduction

8.1.8.How can you evaluate reliability from
the "bottom-up" (component failure
mode to system failure rate)?

Several
simple
models can
be used to
calculate
system
failure rates,
starting with
failure rates
for failure
modes within
individual
system
components

This section deals with models and methods that apply to
non-repairable components and systems. Models for failure rates (and
not repair rates) are described. The next section covers models for
(repairable) system reliability growth.

We use the Competing Risk Model to go from component failure
modes to component failure rates. Next we use the Series Model to go
from components to assemblies and systems. These models assume
independence and "first failure mode to reach failure causes both the
component and the system to fail".

If some components are "in parallel", so that the system can survive one
(or possibly more) component failures, we have the parallel or
redundant model. If an assembly has n identical components, at least r
of which must be working for the system to work, we have what is
known as the r out of n model.

The standby model uses redundancy like the parallel model, except that
the redundant unit is in an off-state (not exercised) until called upon to
replace a failed unit.

This section describes these various models. The last subsection shows
how complex systems can be evaluated using the various models as
building blocks.

8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.1.Competing risk model

Use the
competing
risk model
when the
failure
mechanisms
are
independent
and the first
mechanism
failure
causes the
component
to fail

Assume a (replaceable) component or unit has k different ways it can
fail. These are called failure modes and underlying each failure mode is
a failure mechanism. 

The Competing Risk Model evaluates component reliability by
"building up" from the reliability models for each failure mode. 

The following 3 assumptions are needed: 

Each failure mechanism leading to a particular type of failure
(i.e., failure mode) proceeds independently of every other one, at
least until a failure occurs.

1.  

The component fails when the first of all the competing failure
mechanisms reaches a failure state.

2.  

Each of the k failure modes has a known life distribution model
Fi(t).

3.  

The competing risk model can be used when all three assumptions hold.
If Rc(t), Fc(t), and hc(t) denote the reliability, CDF and failure rate for
the component, respectively, and Ri(t), Fi(t) and hi(t) are the reliability,
CDF and failure rate for the i-th failure mode, respectively, then the
competing risk model formulas are: 

8.1.8.1. Competing risk model
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Multiply
reliabilities
and add
failure rates

Think of the competing risk model in the following way:

All the failure mechanisms are having a race to see which
can reach failure first. They are not allowed to "look over
their shoulder or sideways" at the progress the other ones
are making. They just go their own way as fast as they can
and the first to reach "failure" causes the component to
fail. 

Under these conditions the component reliability is the
product of the failure mode reliabilities and the component
failure rate is just the sum of the failure mode failure rates.

Note that the above holds for any arbitrary life distribution model, as
long as "independence" and "first mechanism failure causes the
component to fail" holds. 

When we learn how to plot and analyze reliability data in later sections,
the methods will be applied separately to each failure mode within the
data set (considering failures due to all other modes as "censored run
times"). With this approach, the competing risk model provides the glue
to put the pieces back together again.

8.1.8.1. Competing risk model

http://www.itl.nist.gov/div898/handbook/apr/section1/apr181.htm (2 of 2) [5/1/2006 10:41:50 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.2.Series model

The series
model is used
to go from
individual
components
to the entire
system,
assuming the
system fails
when the first
component
fails and all
components
fail or
survive
independently
of one
another

The Series Model is used to build up from components to sub-assemblies and systems.
It only applies to non replaceable populations (or first failures of populations of
systems). The assumptions and formulas for the Series Model are identical to those for
the Competing Risk Model, with the k failure modes within a component replaced by the
n components within a system. 

The following 3 assumptions are needed:

Each component operates or fails independently of every other one, at least until
the first component failure occurs. 

1.  

The system fails when the first component failure occurs. 2.  

Each of the n (possibly different) components in the system has a known life
distribution model Fi(t).

3.  

Add failure
rates and
multiply
reliabilities
in the Series
Model

When the Series Model assumptions hold we have:

with the subscript S referring to the entire system and the subscript i referring to the i-th
component. 

Note that the above holds for any arbitrary component life distribution models, as long
as "independence" and "first component failure causes the system to fail" both hold. 

The analogy to a series circuit is useful. The entire system has n components in series.

8.1.8.2. Series model
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The system fails when current no longer flows and each component operates or fails
independently of all the others. The schematic below shows a system with 5 components
in series "replaced" by an "equivalent" (as far as reliability is concerned) system with
only one component. 

8.1.8.2. Series model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.3.Parallel or redundant model

The parallel
model
assumes all n
components
that make up
a system
operate
independently
and the
system works
as long as at
least  one
component
still works

The opposite of a series model, for which the first component failure causes the system
to fail, is a parallel model for which all the components have to fail before the system
fails. If there are n components, any (n-1) of them may be considered redundant to the
remaining one (even if the components are all different). When the system is turned on,
all the components operate until they fail. The system reaches failure at the time of the
last component failure. 

The assumptions for a parallel model are:

All components operate independently of one another, as far as reliability is
concerned. 

1.  

The system operates as long as at least one component is still operating. System
failure occurs at the time of the last component failure.

2.  

The CDF for each component is known.3.  

Multiply
component
CDF's to get
the system
CDF for a
parallel
model

For a parallel model, the CDF Fs(t) for the system is just the product of the CDF's Fi(t)
for the components or 

Rs(t) and hs(t) can be evaluated using basic definitions, once we have Fs(t). 

The schematic below represents a parallel system with 5 components and the (reliability)
equivalent 1 component system with a CDF Fs equal to the product of the 5 component
CDF's. 

8.1.8.3. Parallel or redundant model
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8.1.8.3. Parallel or redundant model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.4.R out of N model

An r out of n
model is a
system that
survives
when at
least r of its
components
are working
(any r)

An "r out of n" system contains both the series system model and the
parallel system model as special cases. The system has n components
that operate or fail independently of one another and as long as at least r
of these components (any r) survive, the system survives. System failure
occurs when the (n-r+1)th component failure occurs. 

When r = n, the r out of n model reduces to the series model. When r =
1, the r out of n model becomes the parallel model. 

We treat here the simple case where all the components are identical. 

Formulas and assumptions for r out of n model (identical components):

All components have the identical reliability function R(t).1.  

All components operate independently of one another (as far as
failure is concerned).

2.  

The system can survive any (n-r) of the components failing. The
system fails at the instant of the (n-r+1)th component failure.

3.  

Formula for
an r out of n
system
where the
components
are identical

System reliability is given by adding the probability of exactly r
components surviving to time t to the probability of exactly (r+1)
components surviving, and so on up to the probability of all components
surviving to time t. These are binomial probabilities (with p = R(t)), so
the system reliability is given by: 

Note: If we relax the assumption that all the components are identical,
then Rs(t) would be the sum of probabilities evaluated for all possible
terms that could be formed by picking at least r survivors and the
corresponding failures. The probability for each term is evaluated as a
product of R(t)'s and F(t)'s. For example, for n = 4 and r = 2, the system

8.1.8.4. R out of N model
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reliability would be (abbreviating the notation for R(t) and F(t) by using
only R and F)

Rs = R1R2F3F4 + R1R3F2F4 + R1R4F2F3 + R2R3F1F4
        + R2R4F1F3 + R3R4F1F2 + R1R2R3F4 + R1R3R4F2
        + R1R2R4F3 + R2R3R4F1 + R1R2R3R4 

8.1.8.4. R out of N model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system
failure rate)?

8.1.8.5.Standby model

The Standby
Model
evaluates
improved
reliability
when backup
replacements
are switched
on when
failures
occur.

A Standby Model refers to the case in which a key component (or
assembly) has an identical backup component in an "off" state until
needed. When the original component fails, a switch turns on the
"standby" backup component and the system continues to operate. 

In the simple case, assume the non-standby part of the system has CDF
F(t) and there are (n-1) identical backup units that will operate in
sequence until the last one fails. At that point, the system finally fails. 

The total system lifetime is the sum of n identically distributed random
lifetimes, each having CDF F(t). 

Identical
backup
Standby
model leads
to
convolution
formulas

In other words, Tn = t1 + t2+ ... + tn, where each ti has CDF F(t) and Tn
has a CDF we denote by Fn(t). This can be evaluated using convolution
formulas: 

In general, convolutions are solved numerically. However, for the
special case when F(t) is the exponential model, the above integrations
can be solved in closed form.

8.1.8.5. Standby model
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Exponential
standby
systems lead
to a gamma
lifetime
model

Special Case: The Exponential (or Gamma) Standby Model

If F(t) has the exponential CDF (i.e., F(t) = 1 - e-lt ),  then 

and the PDF fn(t) is the well-known gamma distribution. 

Example: An unmanned space probe sent out to explore the solar
system has an onboard computer with reliability characterized by the

exponential distribution with a Mean Time To Failure (MTTF) of 1/
= 30 months (a constant failure rate of 1/30 = .033 fails per month). The
probability of surviving a two year mission is only e-24/30 = .45. If,
however, a second computer is included in the probe in a standby mode,
the reliability at 24 months (using the above formula for F2) becomes .8
× .449 + .449 = .81. The failure rate at 24 months (f2/[1-F2]) reduces to
[(24/900) ×.449]/.81 = .015 fails per month. At 12 months the failure
rate is only .0095 fails per month, which is less than 1/3 of the failure
rate calculated for the non-standby case. 

Standby units (as the example shows) are an effective way of increasing
reliability and reducing failure rates, especially during the early stages
of product life. Their improvement effect is similar to, but greater than,
that of parallel redundancy . The drawback, from a practical standpoint,
is the expense of extra components that are not needed for
functionality. 

8.1.8.5. Standby model
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8. Assessing Product Reliability
8.1. Introduction
8.1.8. How can you evaluate reliability from the "bottom-up" (component failure mode to system failure rate)?

8.1.8.6.Complex systems

Often the
reliability
of complex
systems can
be
evaluated
by
successive
applications
of Series
and/or
Parallel
model
formulas Many complex systems can be diagrammed as combinations of Series components,

Parallel components, R out of N components and Standby components. By using the
formulas for these models, subsystems or sections of the original system can be replaced
by an "equivalent" single component with a known CDF or Reliability function.
Proceeding like this, it may be possible to eventually reduce the entire system to one
component with a known CDF. 

Below is an example of a complex system composed of both components in parallel and
components in series is reduced first to a series system and finally to a one-component
system. 

8.1.8.6. Complex systems
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Note: The reduction methods described above will work for many, but not all,  systems.
Some systems with a complicated operational logic structure will need a more formal
structural analysis methodology. This methodology deals with subjects such as event
trees, Boolean representations, coherent structures, cut sets and decompositions, and is
beyond the present scope of this Handbook. 

8.1.8.6. Complex systems
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8. Assessing Product Reliability
8.1. Introduction

8.1.9.How can you model reliability
growth?

A reliability
improvement
test is a
formal
procedure
aimed at
discovering
and fixing
system
reliability
flaws

During the early stages of developing and prototyping complex
systems, reliability often does not meet customer requirements. A
formal test procedure aimed at discovering and fixing causes of
unreliability is known as a Reliability Improvement Test. This test
focuses on system design, system assembly and component selection
weaknesses that cause failures. 

A typical reliability improvement test procedure would be to run a
prototype system, as the customer might for a period of several weeks,
while a multidisciplined team of engineers and technicians (design,
quality, reliability, manufacturing, etc.) analyze every failure that
occurs. This team comes up with root causes for the failures and
develops design and/or assembly improvements to hopefully eliminate
or reduce the future occurrence of that type of failure. As the testing
continues, the improvements the team comes up with are incorporated
into the prototype, so it is expected that reliability will improve during
the course of the test.

Repair rates
should show
an
improvement
trend during
the course of
a reliability
improvement
test and this
can be
modeled
using a
NHPP model

Another name for reliability improvement testing is TAAF testing,
standing for Test, Analyze And Fix. In the semiconductor industry,
another common name for a reliability test (trademarked by Motorola)
is an IRONMAN™. The acronym IRONMAN™ stands for "Improve
Reliability Of New Machines At Night" and emphasizes the "around the
clock" nature of the testing process. 

While only one model applies when a repairable system has no
improvement or degradation trends (the constant repair rate HPP
model), there are infinitely many models that could be used to describe
a system with a decreasing repair rate (reliability growth models). 

Fortunately, one or two relatively simple models have been very
successful in a wide range of industrial applications. Two models that
have previously been described will be used in this section. These
models are the NHPP Power Law Model and the NHPP Exponential

8.1.9. How can you model reliability growth?
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Law Model. The Power Law Model underlies the frequently used
graphical technique known as Duane Plotting.

8.1.9. How can you model reliability growth?
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8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.1.NHPP power law

If the Power
Law applies,
Repair Rates
improve
over time
according to
the formula

. The

exponent 
lies between
0 and 1 and
is called the
reliability
growth slope

This repairable system model was described in  Section 8.1.7.2. The expected number of
failures by time t has the form M(t) = atb and the repair rate has the form m(t) = abtb-1.
This will model improvement when 0 < b < 1, with larger improvements coming when b
is smaller. As we will see in the next section on Duane Plotting, it is convenient to define

 = 1 - b and  =  ab, and write the repair rate as 

m(t) = 

Again we have improvement when 0 <  < 1, with larger improvement coming from

larger values of .  is known as the Duane Plot slope or the reliability improvement
Growth Slope. 

In terms of the original parameters for M(t), we have 

Use of the Power Law model for reliability growth test data generally assumes the
following:

1. While the test is ongoing, system improvements are introduced that produce continual
improvements in the rate of system repair. 

2. Over a long enough period of time the effect of these improvements can be modeled

adequately by the continuous polynomial repair rate improvement model .

8.1.9.1. NHPP power law
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When an
improvement
test ends, the
MTBF stays
constant at
its last
achieved
value 

3. When the improvement test ends at test time T and no further improvement actions are

ongoing, the repair rate has been reduced to . The repair rate remains constant
from then on at this new (improved) level. 

Assumption 3 means that when the test ends, the HPP constant repair rate model takes
over and the MTBF for the system from then on is the reciprocal of the final repair rate

or . If we estimate the expected number of failures up to time T by the actual
number observed, the estimated MTBF at the end of a reliability test (following the
Power Law) is: 

with T denoting the test time, r  is the total number of test failures and  is the reliability

growth slope. A formula for estimating  from system failure times is given in the
Analysis Section for the Power Law model.

Simulated
Data
Example

Simulating NHPP Power Law Data

Step 1: User inputs the positive constants a and b. 

Step 2: Simulate a vector of n uniform (0,1) random numbers. Call these U1, U2, U3, . . .
Un. 

Step 3: Calculate Y1 = {-1/a * ln U1} ** 1/b

Step i: Calculate Yi = {(Yi-1 ** b) -1/a * ln Ui}**1/b  for i = 2, . . ., n 

The n numbers Y1, Y2, . . ., Yn are the desired repair times simulated from an NHPP Power

Law process with parameters a, b (or  = 1 - b and  = ab). 

The Dataplot Macro powersim.dp will ask the user to input the number N of repair times
desired and the parameters a and b. The program will output the N simulated repair times
and a plot of these repair times. 

Example

Below powersim.dp is used to generate 13 random repair times from the NHPP Power
Law process with a = .2 and b = .4.

CALL powersim.dp 

Enter number N of simulated repair times desired
13
Enter value for shape parameter a (a > 0)
.2
Enter value for shape parameter b (b > 0)

8.1.9.1. NHPP power law
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.4 

FAILNUM FAILTIME
1 26
2 182
3 321
4 728
5 896
6 1268
7 1507
8 2325
9 3427
10 11871
11 11978
12 13562
13 15053

8.1.9.1. NHPP power law
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8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.2.Duane plots

A plot on
log-log paper
of successive
MTBF
estimates
versus system
time of fail for
reliability
improvement
test data is
called a
Duane Plot

The standard estimate of the MTBF for a system with a constant repair rate (an HPP system) is
T/r, with T denoting the total time the system was observed and r is the total number of failures
that occurred. 

If we calculate successive MTBF estimates (called Cum MTBF Estimates), every time a failure
occurs for a system undergoing reliability improvement testing, we typically see a sequence of
mostly increasing numbers. 

In 1964, J. T. Duane observed that when he plotted these cum MTBF estimates versus the times
of failure on log-log paper, the points tended to line up following a straight line. This was true for
many different sets of reliability improvement data and many other engineers have seen similar
results over the last three decades. This type of plot is called a Duane Plot and the slope  of the

best line through the points is called the reliability growth slope or Duane plot slope.

Points on a
Duane plot
line up
approximately
on a straight
line if the
Power Law
model applies

Plotting a Duane Plot is simple. If the ith failure occurs at time ti, then plot ti divided by i (the
"y"- axis value) versus the time ti (the "x"-axis value) on log-log graph paper. Do this for all the
test failures and draw the best straight line you can following all these points. 

Why does this "work"? Following the notation for repairable system models, we are plotting
estimates of {t/M(t)} versus the time of failure t. If M(t) follows the Power Law (also described in
the last section), then we are plotting estimates of t/atb versus the time of fail t. This is the same

as plotting  versus t, with  = 1-b . On log-log paper this will be a straight line with

slope  and intercept (when t = 1) of - log10a. 

In other words, a straight line on a Duane plot is equivalent to the NHPP Power Law Model with
a reliability growth slope of = 1 - b and an "a" parameter equal to

10-intercept. 

Note: A useful empirical rule of thumb based on Duane plots made from many reliability
improvement tests across many industries is the following: 

Duane plot
reliability
growth slopes
should lie
between .3
and .6

The reliability improvement slope for virtually all reliability improvement tests will
be between .3 and .6. The lower end (.3) describes a minimally effective test -
perhaps the cross-functional team is inexperienced or the system has many failure
mechanisms that are not well understood. The higher end (.6) approaches the
empirical state of the art for reliability improvement activities. 

8.1.9.2. Duane plots
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Examples of
Duane Plots

Duane Plot Example 1:

A reliability growth test lasted 1500 hours (approximately 10 weeks) and recorded 8 failures at
the following system hours: 33, 76, 145, 347, 555, 811, 1212, 1499. After calculating successive
cum MTBF estimates, a Duane plot shows these estimates versus system age on log vs log paper.
The "best" straight line through the data points corresponds to a NHPP Power Law model with
reliability growth slope  equal to the slope of the line. This line is an estimate of the theoretical

model line (assuming the Power Law holds during the course of the test) and the achieved MTBF
at the end of the test is given by 

T / [r (1- )]

with T denoting the total test time and r the number of failures. Results for this particular
reliability growth test follow.
 

Failure # System Age of Failure Cum MTBF

1 33 33
2 76 38
3 145 48.3
4 347 86.8
5 555 111.0
6 811 135.2
7 1212 173.1
8 1499 187.3

The Duane plot indicates a reasonable fit to a Power Law NHPP model. The reliability
improvement slope (slope of line on Duane plot) is  = .437 (using the formula given in the

section on reliability data analysis for the Power Law model) and the estimated MTBF achieved
by the end of the 1500 hour test is 1500/(8 × [1-.437]) or 333 hours. 

Duane Plot Example 2: 

For the simulated Power Law data used in the Example in the preceding section, the following

8.1.9.2. Duane plots
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Dataplot commands (executed immediately after running powersim.dp) produce the Duane Plot
shown below. 

XLOG ON
YLOG ON
LET MCUM = FAILTIME/FAILNUM
PLOT MCUM FAILTIME 

8.1.9.2. Duane plots
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8. Assessing Product Reliability
8.1. Introduction
8.1.9. How can you model reliability growth?

8.1.9.3.NHPP exponential law

The
Exponential
Law is
another
useful
reliability
growth
model to try
when the
Power law is
not fitting
well

When the data points in a Duane plot show obvious curvature, a model
that might fit better is the NHPP Exponential Law. 

For this model, if  < 0, the repair rate improves over time according

to 

The corresponding cumulative expected failures model is 

This approaches the maximum value of A expected failures as t goes to
infinity, so the cumulative failures plot should clearly be bending over
and asymptotically approaching a value .

Rule of thumb: First try a Duane plot and the Power law model. If that
shows obvious lack of fit, try the Exponential Law model, estimating
parameters using the formulas in the Analysis Section for the
Exponential law. A plot of cum fails versus time, along with the
estimated M(t) curve, can be used to judge goodness of fit. 

 

8.1.9.3. NHPP exponential law
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8. Assessing Product Reliability
8.1. Introduction

8.1.10.How can Bayesian methodology be used for
reliability evaluation?

Several
Bayesian
Methods
overview
topics are
covered in
this section

This section gives an overview of the application of Bayesian techniques in reliability
investigations. The following topics are covered:

What is Bayesian Methodology ?●   

Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors●   

How Bayesian Methodology is used in System Reliability Evaluation●   

Advantages and Disadvantages of using Bayes Methodology●   

What is Bayesian Methodology?

Bayesian
analysis
considers
population
parameters
to be
random, not
fixed 

Old
information,
or subjective
judgment, is
used to
determine a
prior
distribution
for these
population
parameters

It makes a great deal of practical sense to use all the information available, old and/or new,
objective or subjective, when making decisions under uncertainty. This is especially true
when the consequences of the decisions can have a significant impact, financial or
otherwise. Most of us make everyday personal decisions this way, using an intuitive process
based on our experience and subjective judgments. 

Mainstream statistical analysis, however, seeks objectivity by generally restricting the
information used in an analysis to that obtained from a current set of clearly relevant data.
Prior knowledge is not used except to suggest the choice of a particular population model to
"fit" to the data, and this choice is later checked against the data for reasonableness. 

Lifetime or repair models, as we saw earlier when we looked at repairable and non
repairable reliability population models, have one or more unknown parameters. The
classical statistical approach considers these parameters as fixed but unknown constants to
be estimated (i.e., "guessed at") using sample data taken randomly from the population of
interest. A confidence interval for an unknown parameter is really a frequency statement
about the likelihood that numbers calculated from a sample capture the true parameter.
Strictly speaking, one cannot make probability statements about the true parameter since it
is fixed, not random. 

The Bayesian approach, on the other hand, treats these population model parameters as
random, not fixed, quantities. Before looking at the current data, we use old information, or
even subjective judgments, to construct a prior distribution model for these parameters.
This model expresses our starting assessment about how likely various values of the
unknown parameters are. We then make use of the current data (via Baye's formula) to
revise this starting assessment, deriving what is called the posterior distribution model for
the population model parameters. Parameter estimates, along with confidence intervals
(known as credibility intervals), are calculated directly from the posterior distribution.
Credibility intervals are legitimate probability statements about the unknown parameters,

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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since these parameters now are considered random, not fixed. 

It is unlikely in most applications that data will ever exist to validate a chosen prior
distribution model. Parametric Bayesian prior models are chosen because of their flexibility
and mathematical convenience. In particular, conjugate priors (defined below) are a natural
and popular choice of Bayesian prior distribution models. 

Bayes Formula, Prior and Posterior Distribution Models, and Conjugate Priors

Bayes
formula
provides the
mathematical
tool that
combines
prior
knowledge
with current
data to
produce a
posterior
distribution

Bayes formula is a useful equation from probability theory that expresses the conditional
probability of an event A occurring, given that the event B has occurred (written P(A|B)), in
terms of unconditional probabilities and the probability the event B has occurred, given that
A has occurred. In other words, Bayes formula inverts which of the events is the
conditioning event. The formula is 

and P(B) in the denominator is further expanded by using the so-called "Law of Total
Probability" to write 

with the events Ai being mutually exclusive and exhausting all possibilities and including
the event A as one of the Ai.

The same formula, written in terms of probability density function models, takes the form: 

where f(x| ) is the probability model, or likelihood function, for the observed data x given

the unknown parameter (or parameters) , g( ) is the prior distribution model for  and

g( |x) is the posterior distribution model for  given that the data x have been observed. 

When g( |x) and g( ) both belong to the same distribution family, g( ) and 

f(x| ) are called conjugate distributions and g( ) is the conjugate prior for f(x| ). For
example, the Beta distribution model is a conjugate prior for the proportion of successes p
when samples have a binomial distribution. And the Gamma model is a conjugate prior for

the failure rate  when sampling failure times or repair times from an exponentially
distributed population. This latter conjugate pair (gamma, exponential) is used extensively
in Bayesian system reliability applications. 

How Bayes Methodology is used in System Reliability Evaluation

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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Bayesian
system
reliability
evaluation
assumes the
system
MTBF is a
random
quantity
"chosen"
according to
a prior
distribution
model

Models and assumptions for using Bayes methodology will be described in a later section.
Here we compare the classical paradigm versus the Bayesian paradigm when system
reliability follows the HPP or exponential model (i.e., the flat portion of the Bathtub Curve).

Classical Paradigm For System Reliability Evaluation:
The MTBF is one fixed unknown value - there is no “probability” associated with it●   

Failure data from a test or observation period allows you to make inferences about the
value of the true unknown MTBF

●   

No other data are used and no “judgment” - the procedure is objective and based
solely on the test data and the assumed HPP model

●   

Bayesian Paradigm For System Reliability Evaluation:
The MTBF is a random quantity with a probability distribution●   

The particular piece of equipment or system you are testing “chooses” an MTBF from
this distribution and you observe failure data that follow an HPP model with that
MTBF

●   

Prior to running the test, you already have some idea of what the MTBF probability
distribution looks like based on prior test data or an consensus engineering judgment 

●   

Advantages and Disadvantages of using Bayes Methodology

Pro's and
con's for
using
Bayesian
methods

While the primary motivation to use Bayesian reliability methods is typically a desire to
save on test time and materials cost, there are other factors that should also be taken into
account. The table below summarizes some of these "good news" and "bad news"
considerations. 

Bayesian Paradigm: Advantages and Disadvantages

Pro's Con's

Uses prior information - this "makes
sense"

●   

If the prior information is encouraging,
less new testing may be needed to
confirm a desired MTBF at a given
confidence

●   

Confidence intervals are really intervals
for the (random) MTBF - sometimes
called "credibility intervals"

●   

Prior information may not be
accurate - generating misleading
conclusions

●   

Way of inputting prior information
(choice of prior) may not be correct

●   

Customers may not accept validity of
prior data or engineering judgements

●   

There is no one "correct way" of
inputting prior information and
different approaches can give
different results

●   

Results aren't objective and don't
stand by themselves

●   

8.1.10. How can Bayesian methodology be used for reliability evaluation?
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8. Assessing Product Reliability

8.2.Assumptions/Prerequisites

This section describes how life distribution models and acceleration
models are typically chosen. Several graphical and analytical methods
for evaluating model fit are also discussed.

Detailed
contents of
Section 2

2. Assumptions/Prerequisites 

How do you choose an appropriate life distribution model? 

Based on failure mode 1.  

Extreme value argument 2.  

Multiplicative degradation argument 3.  

Fatigue life (Birnbaum-Saunders) argument 4.  

Empirical model fitting - distribution free (Kaplan-Meier)
approach 

5.  

1.  

How do you plot reliability data? 

Probability plotting 1.  

Hazard and cum hazard plotting 2.  

Trend and growth plotting (Duane plots) 3.  

2.  

How can you test reliability model assumptions? 

Visual tests 1.  

Goodness of fit tests 2.  

Likelihood ratio tests 3.  

Trend tests4.  

3.  

How do you choose an appropriate physical acceleration model? 4.  

What models and assumptions are typically made when Bayesian
methods are used for reliability evaluation? 

5.  

 

8.2. Assumptions/Prerequisites

http://www.itl.nist.gov/div898/handbook/apr/section2/apr2.htm (1 of 2) [5/1/2006 10:41:58 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


8.2. Assumptions/Prerequisites

http://www.itl.nist.gov/div898/handbook/apr/section2/apr2.htm (2 of 2) [5/1/2006 10:41:58 AM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.1.How do you choose an appropriate
life distribution model?

Choose
models that
make sense,
fit the data
and,
hopefully,
have a
plausible
theoretical
justification

Life distribution models are chosen for one or more of the following
three reasons:

There is a physical/statistical argument that theoretically matches
a failure mechanism to a life distribution model

1.  

A particular model has previously been used successfully for the
same or a similar failure mechanism 

2.  

A convenient model provides a good empirical fit to all the failure
data

3.  

Whatever method is used to choose a model, the model should

"make sense" - for example, don't use an exponential model with
a constant failure rate to model a "wear out" failure mechanism

●   

pass visual and statistical tests for fitting the data.●   

Models like the lognormal and the Weibull are so flexible that it is not
uncommon for both to fit a small set of failure data equally well. Yet,
especially when projecting via acceleration models to a use condition far
removed from the test data, these two models may predict failure rates
that differ by orders of magnitude. That is why it is more than an
academic exercise to try to find a theoretical justification for using a
particular distribution.

There are
several
useful
theoretical
arguments
to help
guide the
choice of a
model

We will consider three well-known arguments of this type: 

Extreme value argument ●   

Multiplicative degradation argument●   

Fatigue life (Birnbaum-Saunders) model●   

Note that physical/statistical arguments for choosing a life distribution
model are typically based on individual failure modes.

8.2.1. How do you choose an appropriate life distribution model?
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For some
questions,
an
"empirical"
distribution-
free
approach
can be used

The Kaplan-Meier technique can be used when it is appropriate to just
"let the data points speak for themselves" without making any model
assumptions. However, you generally need a considerable amount of
data for this approach to be useful, and acceleration modeling is much
more difficult.

8.2.1. How do you choose an appropriate life distribution model?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.1.Based on failure mode

Life
distribution
models and
physical
acceleration
models
typically
only apply
at the
individual
failure mode
level

Failure mode data are failure data sorted by types of failures. Root
cause analysis must be done on each failure incident in order to
characterize them by failure mode. While this may be difficult and
costly, it is a key part of any serious effort to understand, model, project
and improve component or system reliability. 

The natural place to apply both life distribution models and physical
acceleration models is at the failure mode level. Each component failure
mode will typically have its own life distribution model. The same is
true for acceleration models. For the most part, these models only make
sense at the failure mode level, and not at the component or system
level. Once each mode (or mechanism) is modeled, the bottom-up
approach can be used to build up to the entire component or system. 

In particular, the arguments for choosing a life distribution model
described in the next 3 sections apply at the failure mode level only.
These are the Extreme value argument, the Multiplicative degradation
argument and the Fatigue life (Birnbaum-Saunders) model. 

The distribution-free (Kaplan - Meier) approach can be applied at any
level (mode, component, system, etc.).

8.2.1.1. Based on failure mode
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.2.Extreme value argument

If component
or system
failure
occurs when
the first of
many
competing
failure
processes
reaches a
critical
point, then
Extreme
Value
Theory
suggests that
the Weibull
Distribution
will be a
good model

It is well known that the Central Limit Theorem suggests that normal
distributions will successfully model most engineering data when the
observed measurements arise from the sum of many small random
sources (such as measurement errors).  Practical experience validates
this theory - the normal distribution "works" for many engineering data
sets. 

Less known is the fact that Extreme Value Theory suggests that the
Weibull distribution will successfully model failure times for
mechanisms for which many competing similar failure processes are
"racing" to failure and the first to reach it (i.e., the minimum of a large
collection of roughly comparable random failure times) produces the
observed failure time. Analogously, when a large number of roughly
equivalent runners are competing and the winning time is recorded for
many similar races, these times are likely to follow a Weibull
distribution. 

Note that this does not mean that anytime there are several failure
mechanisms competing to cause a component or system to fail, the
Weibull model applies. One or a few of these mechanisms may
dominate the others and cause almost all of the failures. Then the
"minimum of a large number of roughly comparable" random failure
times does not apply and the proper model should be derived from the
distribution models for the few dominating mechanisms using the
competing risk model.

On the other hand, there are many cases in which failure occurs at the
weakest link of a large number of similar degradation processes or
defect flaws. One example of this occurs when modeling catastrophic
failures of capacitors caused by dielectric material breakdown. Typical
dielectric material has many "flaws" or microscopic sites where a
breakdown will eventually take place. These sites may be thought of as
competing with each other to reach failure first. The Weibull model,
as extreme value theory would suggest, has been very successful as a
life distribution model for this failure mechanism. 

8.2.1.2. Extreme value argument
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.3.Multiplicative degradation argument

The
lognormal
model can be
applied when
degradation
is caused by
random
shocks that
increase
degradation
at a rate
proportional
to the total
amount
already
present

A brief verbal description of the multiplicative degradation argument
(leading to a derivation of the lognormal model) was given under Uses
of the Lognormal Distribution Model. Here a formal derivation will be
outlined because it gives insight into why the lognormal has been a
successful model for many failure mechanisms based on degradation
processes.

Let y1, y2, ...yn  be measurements of the amount of degradation for a
particular failure process taken at successive discrete instants of time as
the process moves towards failure. Assume the following relationships
exist between the y's: 

where the  are small, independent random perturbations or "shocks"

to the system that move the failure process along. In other words, the
increase in the amount of degradation from one instant to the next is a
small random multiple of the total amount of degradation already
present. This is what is meant by multiplicative degradation. The
situation is analogous to a snowball rolling down a snow covered hill;
the larger it becomes, the faster it grows because it is able to pick up
even more snow. 

We can express the total amount of degradation at the n-th instant of
time by

where x0 is a constant and the  are small random shocks. Next we

take natural logarithms of both sides and obtain: 

8.2.1.3. Multiplicative degradation argument
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Using a Central Limit Theorem argument we can conclude that ln xn
has approximately a  normal distribution. But by the properties of the
lognormal distribution, this means that xn (or the amount of
degradation) will follow approximately a lognormal model for any n
(or at any time t). Since failure occurs when the amount of degradation
reaches a critical point, time of failure will be modeled successfully by
a lognormal for this type of process. 

Failure
mechanisms
that might be
successfully
modeled by
the
lognormal
distribution
based on the
multiplicative
degradation
model

What kinds of failure mechanisms might be expected to follow  a
multiplicative degradation model? The processes listed below are likely
candidates:

Chemical reactions leading to the formation of new compounds1.  

Diffusion or migration of ions 2.  

Crack growth or propagation3.  

Many semiconductor failure modes are caused by one of these three
degradation processes. Therefore, it is no surprise that the lognormal
model has been very successful for the following semiconductor wear
out failure mechanisms: 

Corrosion1.  

Metal migration2.  

Electromigration3.  

Diffusion4.  

Crack growth5.  

8.2.1.3. Multiplicative degradation argument
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.4.Fatigue life (Birnbaum-Saunders)
model

A model
derived from
random crack
growth
occurring
during many
independent
cycles of stress

The derivation of the Fatigue Life model is based on repeated cycles
of stress causing degradation leading to eventual failure. The typical
example is crack growth. One key assumption is that the amount of
degradation during any cycle is independent of the degradation in
any other cycle, with the same random distribution. 

When this assumption matches well with a hypothesized physical
model describing the degradation process, one would expect the
Birnbaum-Saunders model to be a reasonable distribution model
candidate. (See the note in the derivation for comments about the
difference between the lognormal model derivation and the Fatigue
Life model assumptions. Also see the comment on Miner's Rule). 

8.2.1.4. Fatigue life (Birnbaum-Saunders) model
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.1. How do you choose an appropriate life distribution model?

8.2.1.5. Empirical model fitting - distribution
free (Kaplan-Meier) approach

The Kaplan-
Meier
procedure
gives CDF
estimates for
complete or
censored
sample data
without
assuming a
particular
distribution
model

The Kaplan-Meier (K-M) Product Limit procedure provides quick,
simple estimates of the Reliability function or the CDF based on failure
data that may even be multicensored. No underlying model (such as
Weibull or lognormal) is assumed; K-M estimation is an empirical
(non-parametric) procedure. Exact times of failure are required,
however.

Calculating Kaplan - Meier Estimates

The steps for calculating K-M estimates are the following:

Order the actual failure times from t1 through tr, where there are r
failures

1.  

Corresponding to each ti, associate the number ni, with ni = the
number of operating units just before the the i-th failure occurred
at time ti

2.  

Estimate R(t1) by (n1 -1)/n13.  

Estimate R(ti) by R(ti-1) × (ni -1)/ni4.  

Estimate the CDF F(ti) by 1 - R(ti)5.  

Note that unfailed units taken off test (i.e., censored) only count up to
the last actual failure time before they were removed. They are included
in the ni counts up to and including that failure time, but not after.

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach
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Example of
K-M
estimate
calculations

A simple example will illustrate the K-M procedure. Assume 20 units
are on life test and 6 failures occur at the following times: 10, 32, 56, 98,
122, and 181 hours. There were 4 unfailed units removed from the test
for other experiments at the following times: 50 100 125 and 150 hours.
The remaining 10 unfailed units were removed from the test at 200
hours. The K-M estimates for this life test are:

R(10) = 19/20
R(32) = 19/20 x 18/19
R(56) = 19/20 x 18/19 x 16/17
R(98) = 19/20 x 18/19 x 16/17 x 15/16
R(122) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14
R(181) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14 x 10/11

A General Expression for K-M Estimates

A general expression for the K-M estimates can be written. Assume we
have n units on test and order the observed times for these n units from
t1 to tn. Some of these are actual failure times and some are running
times for units taken off test before they fail. Keep track of all the
indices corresponding to actual failure times. Then the K-M estimates
are given by:

with the "hat" over R indicating it is an estimate and S is the set of all
subscripts j such that tj is an actual failure time. The notation j S and tj
less than or equal to ti means we only form products for indices j that are
in S and also correspond to times of failure less than or equal to ti.

Once values for R(ti) are calculated, the CDF estimates are
F(ti) = 1 - R(ti)

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach
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A small
modification
of K-M
estimates
produces
better
results for
probability
plotting

Modified K-M Estimates

The K-M estimate at the time of the last failure is R(tr) = 0 and F(tr) =
1. This estimate has a pessimistic bias and cannot be plotted (without
modification) on probability paper since the CDF for standard reliability
models asymptotically approaches 1 as time approaches infinity. Better
estimates for graphical plotting can be obtained by modifying the K-S
estimates so that they reduce to the median rank estimates for plotting
Type I Censored life test data (described in the next section). Modified
K-M estimates are given by the formula

Once values for R(ti) are calculated, the CDF estimates are F(ti) = 1 -
R(ti)

8.2.1.5. Empirical model fitting - distribution free (Kaplan-Meier) approach
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.2.How do you plot reliability data?

Plot
reliability
data on the
right
"special"
graph paper
and if the
points line up
approximately
on a straight
line, the
assumed
model is a
reasonable fit

Graphical plots of reliability data are quick, useful visual tests of
whether a particular model is consistent with the observed data. The
basic idea behind virtually all graphical plotting techniques is the
following: 

Points calculated from the data are placed on specially
constructed graph paper and, as long as they line up
approximately on  a straight line, the analyst can conclude
that the data are consistent with the particular model the
paper is designed to test.

If the reliability data consist of (possibly multicensored) failure data
from a non repairable population (or a repairable population for which
only time to the first failure is considered) then the models are life
distribution models such as the exponential, Weibull or lognormal. If
the data consist of repair times for a repairable system, then the model
might be the NHPP Power Law and the plot would be a Duane Plot. 

The kinds of plots we will consider for failure data from
non-repairable populations are: 

Probability (CDF) plots●   

Hazard and Cum Hazard plots●   

For repairable populations we have

Trend plots (to check whether an HPP or exponential model
applies)

●   

Duane plots (to check whether the NHPP Power Law applies)●   

Later on (Section 8.4.2.1) we will also look at plots that can be used to
check acceleration model assumptions. 

Note: Many of the plots discussed in this section can also be used to
obtain quick estimates of model parameters. This will be covered in
later sections. While there may be other, more accurate ways of
estimating parameters, simple graphical estimates can be very handy,
especially when other techniques require software programs that are

8.2.2. How do you plot reliability data?
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not readily available.

8.2.2. How do you plot reliability data?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.2. How do you plot reliability data?

8.2.2.1.Probability plotting

Use
probability
plots to see
your data
and visually
check
model
assumptions

Probability plots are simple visual ways of summarizing reliability data by plotting CDF
estimates vs time on specially constructed probability paper. 

Commercial papers are available for all the typical life distribution models. One axis (some
papers use the y-axis and others the x-axis, so you have to check carefully) is labeled "Time"
and the other axis is labeled "Cum Percent" or "Percentile". There are rules, independent of the
model or type of paper, for calculating plotting positions from the reliability data. These only
depend on the type of censoring in the data and whether exact times of failure are recorded or
only readout times. 

Plot each
failure
mode
separately

Remember that different failure modes can and should be separated out and individually
analyzed. When analyzing failure mode A, for example, treat failure times from failure modes
B, C, etc., as censored run times. Then repeat for failure mode B, and so on. 

Data points
line up
roughly on
a straight
line when
the model
chosen is
reasonable

When the points are plotted, the analyst fits a straight line through them (either by eye, or with
the aid of a least squares fitting program). Every straight line on, say, Weibull paper uniquely
corresponds to a particular Weibull life distribution model and the same is true for lognormal
or exponential paper. If the points follow the line reasonably well, then the model is consistent
with the data. If it was your previously chosen model, there is no reason to question the choice.
Depending on the type of paper, there will be a simple way to find the parameter estimates that
correspond to the fitted straight line.

Plotting
positions on
probability
paper
depend on
the type of
data
censoring

Plotting Positions: Censored Data (Type I or Type II)

At the time ti of the i-th failure, we need an estimate of the CDF (or the Cum. Population
Percent Failure). The simplest and most obvious estimate is just 100 × i/n (with a total of n
units on test). This, however, is generally an overestimate (i.e. biased). Various texts
recommend corrections such as 100 × (i-.5)/n or 100 × i/(n+1). Here, we recommend what are
known as (approximate) median rank estimates: 

Corresponding to the time ti of the i-th failure, use a CDF or Percentile estimate of 100 × (i -
.3)/(n + .4) 

Plotting Positions: Readout Data

Let the readout times be T1, T2, ..., Tk and let the corresponding new failures recorded at each
readout be r1, r2, ..., rk. Again, there are n units on test.

8.2.2.1. Probability plotting
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Corresponding to the readout time Tj, use a CDF or Percentile estimate of

Plotting Positions: Multicensored Data

The calculations are more complicated for multicensored data. K-M estimates (described in a
preceding section) can be used to obtain plotting positions at every failure time. The more
precise Modified K-M Estimates are recommended. They reduce to the Censored Type I or the
Censored Type II median rank estimates when the data consist of only failures, without any
removals except possibly at the end of the test. 

How Special Papers Work

It is not
difficult to
do
probability
plotting for
many
reliability
models even
without
specially
constructed
graph
paper

The general idea is to take the model CDF equation and write it in such a way that a function
of F(t) is a linear equation of a function of t. This will be clear after a few examples. In the
formulas that follow, "ln" always means "natural logarithm", while "log" always means "base
10 logarithm". 

a) Exponential Model: Take the exponential CDF and rewrite it as

If we let y = 1/{1 - F(t)} and x = t, then log (y) is linear in x with slope /ln10. This shows we
can make our own special exponential probability paper by using standard semi log paper
(with a logarithmic y-axis). Use the plotting position estimates for F(ti) described above
(without the 100 × multiplier) to calculate pairs of (xi,yi) points to plot. 

If the data are consistent with an exponential model, the resulting plot will have points that

line up almost as a straight line going through the origin with slope /ln10. 

b) Weibull Model: Take the Weibull CDF and rewrite it as

8.2.2.1. Probability plotting
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If we let y = ln [1/{1-F(t)}] and x = t, then log (y) is linear in log(x) with slope . This shows
we can make our own Weibull probability paper by using log log paper. Use the usual plotting
position estimates for F(ti) (without the 100 × multiplier) to calculate pairs of (xi,yi) points to
plot. 

If the data are consistent with a Weibull model, the resulting plot will have points that line up

roughly on a straight line with slope . This line will cross the log x-axis at time t =  and the

log y axis (i.e., the intercept) at - log .

c) Lognormal Model: Take the lognormal cdf and rewrite it as

with  denoting the inverse function for the standard normal distribution (taking a
probability as an argument and returning the corresponding "z" value).

If we let y = t and x = {F(t)}, then log y is linear in x with slope /ln10 and intercept
(when F(t) = .5) of log T50. We can make our own lognormal probability paper by using semi
log paper (with a logarithmic y-axis). Use the usual plotting position estimates for F(ti)
(without the 100 × multiplier) to calculate pairs of (xi,yi) points to plot. 

If the data are consistent with a lognormal model, the resulting plot will have points that line
up roughly on a straight line with slope /ln10 and intercept T50 on the y-axis.

d) Extreme Value Distribution (Type I - for minimum): Take the extreme value distribution
CDF and rewrite it as 

If we let y = -ln(1 - F(x)), then ln y is linear in x with slope 1/  and intercept -µ / . We can

use semi log paper (with a logarithmic y-axis) and plot y vs x. The points should follow a

straight line with a slope of 1/ ln10 and an intercept of - ln10. The ln 10 factors are

needed because commercial log paper uses base 10 logarithms. 

8.2.2.1. Probability plotting
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DATAPLOT Example

A Dataplot
Weibull
example of
probability
plotting

Using the Dataplot commands to generate Weibull random failure times, we generate 20
Weibull failure times with a shape parameter of  γ  = 1.5 and α  = 500. Assuming a test time
of T = 500 hours, only 10 of these failure times would have been observed. They are, to the
nearest hour: 54, 187, 216, 240, 244, 335, 361, 373, 375, and 386. First we will compute
plotting position CDF estimates based on these failure times, and then a probability plot using
the "make our own paper" method. 

( 1)
Fail # = i

( 2) 
Time of Fail 

(x)

(3)
F(ti) estimate 

(i-.3)/20.4

(4)
ln{1/(1-F(ti)} 

(y)
1 54 .034 .035
2 187 .083 .087
3 216 .132 .142
4 240 .181 .200
5 244 .230 .262
6 335 .279 .328
7 361 .328 .398
8 373 .377 .474
9 375 .426 .556
10 386 .475 .645

Of course, with commercial Weibull paper we would plot pairs of points from column (2) and
column (3). With ordinary log log paper we plot (2) vs (4).

The Dataplot sequence of commands and resulting plot follow: 

LET X = DATA 54 187 216 240 244 335 361 373 375 386 
LET Y = DATA .035 .087 .142 .2 .262 .328 .398 .474 .556 .645
XLOG ON
YLOG ON
XLABEL LOG TIME
YLABEL LOG LN (1/(1-F))
PLOT Y X

8.2.2.1. Probability plotting
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Note that the configuration of points appears to have some curvature. This is mostly due to the
very first point on the plot (the earliest time of failure). The first few points on a probability
plot have more variability than points in the central range and less attention should be paid to
them when visually testing for "straightness". 

Use of least
squares
(regression)
technique to
fit a line
through the
points on
probability
paper

We could use Dataplot to fit a straight line through the points via the commands

LET YY = LOG10(Y)
LET XX = LOG10(X)
FIT YY XX

This would give a slope estimate of 1.46, which is close to the 1.5 value used in the
simulation.

The intercept is -4.114 and setting this equal to - log  we estimate  = 657 (the "true"
value used in the simulation was 500).

Dataplot
has a
special
Weibull
probability
paper
function for
complete
data
samples (no
censoring)

Finally, we note that Dataplot has a built-in Weibull probability paper command that can be
used whenever we have a complete sample (i.e., no censoring and exact failure times). First

you have to run PPCC to obtain an estimate of  = GAMMA. This is stored under SHAPE.
The full sequence of commands (with XLOG and YLOG both set to OFF) is

SET MINMAX = 1
WEIBULL PPCC PLOT SAMPLE
SET GAMMA = SHAPE
WEIBULL PLOT SAMPLE

8.2.2.1. Probability plotting
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.2. How do you plot reliability data?

8.2.2.2.Hazard and cum hazard plotting

Another
kind of
plotting,
called
Cum
Hazard
Plotting,
has the
same
purpose as
probability
plotting

Just commercial probability paper is available for most life distribution models for
probability plotting of reliability data, there are also special Cum Hazard Plotting papers
available for many life distribution models. These papers plot estimates for the Cum
Hazard H(ti)vs the time ti of the i-th failure. As with probability plots, the plotting

positions are calculated independently of the model or paper used and a reasonable
straight-line fit to the points confirms that the chosen model and the data are consistent. 

Advantages of Cum Hazard Plotting
It is much easier to calculate plotting positions for multicensored data using cum
hazard plotting techniques. 

1.  

Linear graph paper can be used for exponential data and log-log paper can be used
for Weibull data. 

2.  

Disadvantages of Cum Hazard Plotting
Commercial Cum Hazard paper may be difficult to find. 1.  

It is less intuitively clear just what is being plotted. Cum percent failed (i.e.,
probability plots) is meaningful and the resulting straight-line fit can be used to
read off times when desired percents of the population will have failed. Percent
cumulative hazard increases beyond 100% and is harder to interpret.

2.  

Normal cum hazard plotting techniques require exact times of failure and running
times.

3.  

With computers to calculate the K-M estimates for probability plotting, the main
advantage of cum hazard plotting goes away.

4.  

Since probability plots are generally more useful, we will only give a brief description of
hazard plotting. 

How to Make Cum Hazard Plots
Order the failure times and running times for each of the n units on test in
ascending order from 1 to n. The order is called the rank of the unit. Calculate the
reverse rank for each unit (reverse rank = n- rank +1).

1.  

Calculate a Hazard "value" for every failed unit (do this only for the failed units).
The Hazard value for the failed unit with reverse rank k is just 1/k. 

2.  

Calculate the cumulative hazard values for each failed unit. The cumulative hazard
value corresponding to a particular failed unit is the sum of all the hazard values
for failed units with ranks up to and including that failed unit. 

3.  

8.2.2.2. Hazard and cum hazard plotting
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Plot the time of fail vs the cumulative hazard value on special Cum Hazard paper
(or construct your own paper as covered below for the exponential and the Weibull
model).

4.  

A life test
cum
hazard
plotting
example

Example: Ten units were tested at high stress test for up to 250 hours. Six failures
occurred at 37, 73, 132, 195, 222 and 248 hours. Four units were taken off test without
failing at the following run times: 50, 100, 200 and 250 hours. Cum hazard values were
computed in the following table: 

(1)
Time of Event

(2)
1= failure
0=runtime

(3)
Rank

(4)
Reverse Rank

(5)
Haz Val

(2) x 1/(4)

(6)
Cum Hazard Value

37 1 1 10 1/10 .10
50 0 2 9   
73 1 3 8 1/8 .225
100 0 4 7   
132 1 5 6 1/6 .391
195 1 6 5 1/5 .591
200 0 7 4   
222 1 8 3 1/3 .924
248 1 9 2 1/2 1.424
250 0 10 1   

Next ignore the rows with no cum hazard value and plot column (1) vs column (6).

As with
probability
plotting,
you can
make your
own
special
hazard
plotting
paper for
many
models

Exponential and Weibull "Homemade" Hazard Paper

The cum hazard for the exponential is just H(t) = t, which is linear in t with a 0
intercept. So a simple linear graph paper plot of y = col (6) vs x = col (1) should line up

as approximately a straight line going through the origin with slope  if the exponential
model is appropriate. The Dataplot commands and graph of this are shown below:

LET X = DATA 37 73 132 195 222 248
LET Y = DATA .1 .225 .391 .591 .924 1.424
PLOT Y X

8.2.2.2. Hazard and cum hazard plotting
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The cum Hazard for the Weibull is , so a plot of y vs x on log log paper

should resemble a straight line with slope , if the Weibull model is appropriate. The
Dataplot commands and graph of this are shown below:

XLOG ON
YLOG ON
PLOT Y X

8.2.2.2. Hazard and cum hazard plotting
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The equation of the least squares line fit through these points can be found from

LET YY = LOG10(Y)
LET XX = LOG10(X)
FIT Y X

The Weibull fit looks better, although the slope estimate is 1.27, which is not far from an
exponential model slope of 1. Of course, with a sample of just 10, and only 6 failures, it
is difficult to pick a model from the data alone.

8.2.2.2. Hazard and cum hazard plotting
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.2. How do you plot reliability data?

8.2.2.3.Trend and growth plotting (Duane
plots)

Repair rates
are typically
either nearly
constant over
time or else
consistently
follow a
good or a
bad trend

Models for repairable systems were described earlier. These models are
for the cumulative number of failuress (or the repair rate) over time.
The two models used with most success throughout industry are the
HPP (constant repair rate or "exponential" system model) and the
NHPP Power Law process (the repair rate is the polynomial m(t) =

).

Before constructing a Duane Plot, there are a few simple trend plots
that often convey strong evidence of the presence or absence of a trend
in the repair rate over time. If there is no trend, an HPP model is
reasonable. If there is an apparent improvement or degradation trend, a
Duane Plot will provide a visual check for whether the NHPP Power
law model is consistent with the data. 

A few simple
plots can
help us
decide
whether
trends are
present

These simple visual graphical tests for trends are 

Plot cumulative failures versus system age (a step function that
goes up every time there is a new failure). If this plot looks
linear, there is no obvious improvement (or degradation) trend. A
bending downward indicates improvement; bending upward
indicates degradation.

1.  

Plot the inter arrival times between new failures (in other words,
the waiting times between failures, with the time to the first
failure used as the first "inter-arrival" time). If these trend up,
there is improvement; if they trend down, there is degradation.

2.  

Plot the reciprocals of the inter-arrival times. Each reciprocal is a
new failure rate estimate based only on the waiting time since the
last failure. If these trend down, there is improvement; an upward
trend indicates degradation.

3.  

8.2.2.3. Trend and growth plotting (Duane plots)
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Trend plots
and a Duane
Plot for
actual
Reliability
Improvement
Test data

Case Study 1:  Use of Trend Plots and Duane Plots with Reliability
Improvement Test Data

A prototype of a new, complex piece of equipment went through a
1500 operational hours Reliability Improvement Test. During the test
there were 10 failures. As part of the improvement process, a cross
functional Failure Review Board made sure every failure was analyzed
down to the root cause and design and parts selection fixes were
implemented on the prototype. The observed failure times were: 5, 40,
43, 175, 389, 712, 747, 795, 1299 and 1478 hours, with the test ending
at 1500 hours. The reliability engineer on the Failure Review Board
first made trend plots as described above, then made a Duane plot.
These plots (using EXCEL) follow. 

8.2.2.3. Trend and growth plotting (Duane plots)
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Time Cum MTBF
5 5
40 20
43 14.3
175 43.75
389 77.8

8.2.2.3. Trend and growth plotting (Duane plots)
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712 118.67
747 106.7
795 99.4
1299 144.3
1478 147.8

Comments: The three trend plots all show an improvement trend. The
reason it might help to try all three is that there are examples where
trends show up clearer on one of these plots, as compared to the others.
Formal statistical tests on the significance of this visual evidence of a
trend will be shown in the section on Trend Tests. 

The points on the Duane Plot line up roughly as a straight line,
indicating the NHPP Power Law model is consistent with the data. 

Estimates for the reliability growth slope and the MTBF at the end of
this test for this case study will be given in a later section. 

8.2.2.3. Trend and growth plotting (Duane plots)
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.3.How can you test reliability model
assumptions?

Models are
frequently
necessary -
but should
always be
checked

Since reliability models are often used to project (extrapolate) failure
rates or MTBF's that are well beyond the range of the reliability data
used to fit these models, it is very important to "test" whether the
models chosen are consistent with whatever data are available. This
section describes several ways of deciding whether a model under
examination is acceptable. These are: 

Visual Tests1.  

Goodness of Fit Tests2.  

Likelihood Ratio Tests3.  

Trend Tests4.  

8.2.3. How can you test reliability model assumptions?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.1.Visual tests

A visual test
of a model is
a simple
plot that
tells us at a
glance
whether the
model is
consistent
with the
data

We have already seen many examples of visual tests of models. These
were: Probability Plots, Cum hazard Plots, Duane Plots and Trend Plots.
In all but the Trend Plots, the model was "tested' by how well the data
points followed a straight line. In the case of the Trend Plots, we looked
for curvature away from a straight line (cum repair plots) or increasing
or decreasing size trends (inter arrival times and reciprocal inter-arrival
times). 

These simple plots are a powerful diagnostic tool since the human eye
can often detect patterns or anomalies in the data by studying graphs.
That kind of invaluable information would be lost if the analyst only
used quantitative statistical tests to check model fit. Every analysis
should include as many visual tests as are applicable. 

Advantages of Visual Tests
Easy to understand and explain.1.  

Can occasionally reveal patterns or anomalies in the data.2.  

When a model "passes" a visual test, it is somewhat unlikely any
quantitative statistical test will "reject" it (the human eye is less
forgiving and more likely to detect spurious trends)

3.  

Combine
visual tests
with formal
quantitative
tests for the
"best of both
worlds"
approach

Disadvantages of Visual Tests
Visual tests are subjective.1.  

They do not quantify how well or how poorly a model fits the
data.

2.  

They are of little help in choosing between two or more
competing models that both appear to fit the data.

3.  

Simulation studies have shown that correct models may often
appear to not fit well by sheer chance - it is hard to know when
visual evidence is strong enough to reject what was previously
believed to be a correct model.

4.  

You can retain the advantages of visual tests and remove their

8.2.3.1. Visual tests
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disadvantages by combining data plots with formal statistical tests of
goodness of fit or trend. 

8.2.3.1. Visual tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.2.Goodness of fit tests

A Goodness
of Fit test
checks on
whether
your data
are
reasonable
or highly
unlikely,
given an
assumed
distribution
model

General tests for checking the hypothesis that your data are consistent
with a particular model are discussed in Chapter 7. Details and examples
of the Chi-Square Goodness of Fit test and the Kolmolgorov-Smirnov
(K-S) test are given in Chapter 1. The Chi-Square test can be used with
Type I or Type II censored data and readout data if there are enough
failures and readout times. The K-S test generally requires complete
samples, which limits its usefulness in reliability analysis. 

These tests control the probability of rejecting a valid model as follows: 

the analyst chooses a confidence level designated by 100 × (1 - 
).

●   

a test statistic is calculated from the data and compared to likely
values for this statistic, assuming the model is correct. 

●   

if the test statistic has a very unlikely value, or less than or equal
to an  probability of occurring, where  is a small value like .1
or .05 or even .01, then the model is rejected.

●   

So the risk of rejecting the right model is kept to  or less, and the
choice of  usually takes into account the potential loss or difficulties
incurred if the model is rejected.

8.2.3.2. Goodness of fit tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.3.Likelihood ratio tests

Likelihood
Ratio Tests
are a
powerful,
very general
method of
testing model
assumptions.
However, 
they require
special
software, not
always
readily
available.

Likelihood functions for reliability data are described in Section 4. Two
ways we use likelihood functions to choose models or verify/validate
assumptions are: 

1. Calculate the maximum likelihood of the sample data based on an
assumed distribution model (the maximum occurs when unknown
parameters are replaced by their maximum likelihood estimates).
Repeat this calculation for other candidate distribution models that also
appear to fit the data (based on probability plots). If all the models have
the same number of unknown parameters, and there is no convincing
reason to choose one particular model over another based on the failure
mechanism or previous successful analyses, then pick the model with
the largest likelihood value. 

2. Many model assumptions can be viewed as putting restrictions on the
parameters in a likelihood expression that effectively reduce the total
number of unknown parameters. Some common examples are: 

Examples
where
assumptions
can be tested
by the
Likelihood
Ratio Test

i) It is suspected that a type of data, typically modeled by a
Weibull distribution, can be fit adequately by an
exponential model. The exponential distribution is a

special case of the Weibull, with the shape parameter  set
to 1. If we write the Weibull likelihood function for the
data, the exponential model likelihood function is obtained

by setting  to 1, and the number of unknown parameters
has been reduced from two to one. 

ii) Assume we have n cells of data from an acceleration
test, with each cell having a different operating
temperature. We assume a lognormal population model
applies in every cell. Without an acceleration model
assumption, the likelihood of the experimental data would
be the product of the likelihoods from each cell and there

8.2.3.3. Likelihood ratio tests
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would be 2n unknown parameters (a different T50 and 
for each cell). If we assume an Arrhenius model applies,
the total number of parameters drops from 2n to just 3, the

single common  and the Arrhenius A and H
parameters. This acceleration assumption "saves" (2n-3)
parameters. 

iii) We life test samples of product from two vendors. The
product is known to have a failure mechanism modeled by
the Weibull distribution, and we want to know whether
there is a difference in reliability between the vendors. The
unrestricted likelihood of the data is the product of the two
likelihoods, with 4 unknown parameters (the shape and
characteristic life for each vendor population). If, however,
we assume no difference between vendors, the likelihood
reduces to having only two unknown parameters (the
common shape and the common characteristic life). Two
parameters are "lost" by the assumption of "no difference".

Clearly, we could come up with many more examples like these three,
for which an important assumption can be restated as a reduction or
restriction on the number of parameters used to formulate the likelihood
function of the data. In all these cases, there is a simple and very useful
way to test whether the assumption is consistent with the data. 

The Likelihood Ratio Test Procedure

Details of
the
Likelihood
Ratio Test
procedure

In general,
calculations
are difficult
and need to
be built into
the software
you use

Let L1 be the maximum value of the likelihood of the data without the
additional assumption. In other words, L1 is the likelihood of the data
with all the parameters unrestricted and maximum likelihood estimates
substituted for these parameters. 

Let L0 be the maximum value of the likelihood when the parameters are
restricted (and reduced in number) based on the assumption. Assume k
parameters were lost (i.e., L0 has k less parameters than L1).

Form the ratio  = L0/L1. This ratio is always between 0 and 1 and the

less likely the assumption is, the smaller  will be. This can be
quantified at a given confidence level as follows:

Calculate = -2 ln . The smaller  is, the larger  will be.1.  

We can tell when  is significantly large by comparing it to the
upper 100 × (1- ) percentile point of a Chi Square distribution

2.  

8.2.3.3. Likelihood ratio tests
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with k degrees of freedom.  has an approximate Chi-Square
distribution with k degrees of freedom and the approximation is
usually good, even for small sample sizes.

The likelihood ratio test computes  and rejects the assumption

if  is larger than a Chi-Square percentile with k degrees of
freedom, where the percentile corresponds to the confidence
level chosen by the analyst.

3.  

Note: While Likelihood Ratio test procedures are very useful and
widely applicable, the computations are difficult to perform by hand,
especially for censored data, and appropriate software is necessary.

8.2.3.3. Likelihood ratio tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites
8.2.3. How can you test reliability model assumptions?

8.2.3.4.Trend tests

Formal
Trend Tests
should
accompany
Trend Plots
and Duane
Plots. Three
are given in
this section

In this section we look at formal statistical tests that can allow us to
quantitatively determine whether or not the repair times of a system
show a significant trend (which may be an improvement or a
degradation trend). The section on trend and growth plotting contained
a discussion of visual tests for trends - this section complements those
visual tests as several numerical tests are presented.

Three statistical test procedures will be described: 

The Reverse Arrangement Test (a simple and useful test that has
the advantage of making no assumptions about a model for the
possible trend)

1.  

The Military Handbook Test (optimal for distinguishing between
"no trend' and a trend following the NHPP Power Law or Duane
model)

2.  

The Laplace Test (optimal for distinguishing between "no trend'
and a trend following the NHPP Exponential Law model)

3.  

The Reverse
Arrangement
Test (RAT
test) is simple
and makes no
assumptions
about what
model a trend
might follow

The Reverse Arrangement Test

Assume there are r repairs during the observation period and they
occurred at system ages T1, T2, T3, ...Tr (we set the start of the
observation period to T = 0). Let I1 = T1, 
I2 = T2 - T1, I3 = T3 - T2, ..., Ir = Tr - Tr-1 be the inter-arrival times for
repairs (i.e., the sequence of waiting times between failures). Assume
the observation period ends at time Tend>Tr. 

Previously, we plotted this sequence of inter-arrival times to look for
evidence of trends. Now, we calculate how many instances we have of
a later inter-arrival time being strictly greater than an earlier
inter-arrival time. Each time that happens, we call it a reversal. If there
are a lot of reversals (more than are likely from pure chance with no
trend), we have significant evidence of an improvement trend. If there
are too few reversals we have significant evidence of degradation. 

8.2.3.4. Trend tests
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A formal definition of the reversal count and some properties of this
count are: 

count a reversal every time Ij < Ik for some j and k with j < k ●   

this reversal count is the total number of reversals R●   

for r repair times, the maximum possible number of reversals is
r(r-1)/2

●   

if there are no trends, on the average one would expect to have
r(r-1)/4 reversals.

●   

As a simple example, assume we have 5 repair times at system ages 22,
58, 71, 156 and 225, and the observation period ended at system age
300 . First calculate the inter arrival times and obtain: 22, 36, 13, 85,
69. Next, count reversals by "putting your finger" on the first
inter-arrival time, 22, and counting how many later inter arrival times
are greater than that. In this case, there are 3. Continue by "moving
your finger" to the second time, 36, and counting how many later times
are greater. There are exactly 2. Repeating this for the third and fourth
inter-arrival times (with many repairs, your finger gets very tired!) we
obtain 2 and 0 reversals, respectively. Adding 3 + 2 + 2 + 0 = 7, we see
that R = 7. The total possible number of reversals is 5x4/2 = 10 and an
"average" number is half this, or 5. 

In the example, we saw 7 reversals (2 more than average). Is this
strong evidence for an improvement trend? The following table allows
us to answer that at a 90% or 95% or 99% confidence level - the higher
the confidence, the stronger the evidence of improvement (or the less
likely that pure chance alone produced the result).

A useful table
to check
whether a
reliability test
has
demonstrated
significant
improvement

Value of R Indicating Significant Improvement (One-Sided Test)

Number of
Repairs

Minimum R for
90% Evidence of

Improvement

Minimum R for
95% Evidence of

Improvement

Minimum R for
99% Evidence of

Improvement
4 6 6 -
5 9 9 10
6 12 13 14
7 16 17 19
8 20 22 24
9 25 27 30
10 31 33 36
11 37 39 43
12 43 46 50

One-sided test means before looking at the data we expected

8.2.3.4. Trend tests
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improvement trends, or, at worst, a constant repair rate. This would be
the case if we know of actions taken to improve reliability (such as
occur during reliability improvement tests). 

For the r = 5 repair times example above where we had R = 7, the table
shows we do not (yet) have enough evidence to demonstrate a
significant improvement trend. That does not mean that an
improvement model is incorrect - it just means it is not yet "proved"
statistically. With small numbers of repairs, it is not easy to obtain
significant results. 

For numbers of repairs beyond 12, there is a good approximation
formula that can be used to determine whether R is large enough to be
significant. Calculate 

Use this
formula when
there are
more than 12
repairs in the
data set

and if z > 1.282, we have at least 90% significance. If z > 1.645, we
have 95% significance and a z > 2.33 indicates 99% significance. Since
z has an approximate standard normal distribution, the Dataplot
command 

LET PERCENTILE = 100* NORCDF(z)

will return the percentile corresponding to z. 

That covers the (one-sided) test for significant improvement trends. If,
on the other hand, we believe there may be a degradation trend (the
system is wearing out or being over stressed, for example) and we want
to know if the data confirms this, then we expect a low value for R and
we need a table to determine when the value is low enough to be
significant. The table below gives these critical values for R. 

Value of R Indicating Significant Degradation Trend (One-Sided Test)

Number of
Repairs

Maximum R for
90% Evidence of

Degradation

Maximum R for
95% Evidence of

Degradation

Maximum R for
99% Evidence of

Degradation
4 0 0 -
5 1 1 0
6 3 2 1
7 5 4 2
8 8 6 4

8.2.3.4. Trend tests
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9 11 9 6
10 14 12 9
11 18 16 12
12 23 20 16

For numbers of repairs r >12, use the approximation formula above,
with R replaced by [r(r-1)/2 - R].

Because of
the success of
the Duane
model with
industrial
improvement
test data, this
Trend Test is
recommended

The Military Handbook Test

This test is better at finding significance when the choice is between no
trend and a NHPP Power Law (Duane) model. In other words, if the
data come from a system following the Power Law, this test will
generally do better than any other test in terms of finding significance. 

As before, we have r times of repair T1, T2, T3, ...Tr with the
observation period ending at time Tend>Tr. Calculate 

and compare this to percentiles of the chi-square distribution with 2r
degrees of freedom. For a one-sided improvement test, reject no trend
(or HPP) in favor of an improvement trend if the chi square value is
beyond the upper 90 (or 95, or 99) percentile. For a one-sided
degradation test, reject no trend if the chi-square value is less than the
10 (or 5, or 1) percentile. 

Applying this test to the 5 repair times example, the test statistic has
value 13.28 with 10 degrees of freedom, and the following Dataplot
command evaluates the chi-square percentile to be 79%: 

LET PERCENTILE = 100*CHSCDF(13.28,10)

The Laplace Test

This test is better at finding significance when the choice is between no
trend and a NHPP Exponential model. In other words, if the data come
from a system following the Exponential Law, this test will generally
do better than any test in terms of finding significance. 

As before, we have r times of repair T1, T2, T3, ...Tr  with the
observation period ending at time Tend>Tr. Calculate

8.2.3.4. Trend tests
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and compare this to high (for improvement) or low (for degradation)
percentiles of the standard normal distribution. The Dataplot command 

LET PERCENTILE = 100* NORCDF(z)

will return the percentile corresponding to z. 

Formal tests
generally
confirm the
subjective
information
conveyed by
trend plots

Case Study 1: Reliability Test Improvement Data (Continued from
earlier work)

The failure data and Trend plots and Duane plot were shown earlier.
The observed failure times were: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours. 

Reverse Arrangement Test: The inter-arrival times are: 5, 35, 3, 132,
214, 323, 35, 48, 504 and 179. The number of reversals is 33, which,
according to the table above, is just significant at the 95% level. 

The Military Handbook Test: The Chi-Square test statistic, using the
formula given above, is 37.23 with 20 degrees of freedom. The
Dataplot expression

LET PERCENTILE = 100*CHSCDF(37.23,20)

yields a significance level of 98.9%. Since the Duane Plot looked very
reasonable, this test probably gives the most precise significance
assessment of how unlikely it is that sheer chance produced such an
apparent improvement trend (only about 1.1% probability). 

8.2.3.4. Trend tests
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.4.How do you choose an appropriate
physical acceleration model?

Choosing a
good
acceleration
model is
part science
and part art
- but start
with a good
literature
search

Choosing a physical acceleration model is a lot like choosing a life
distribution model. First identify the failure mode and what stresses are
relevant (i.e., will accelerate the failure mechanism). Then check to see
if the literature contains examples of successful applications of a
particular model for this mechanism. 

If the literature offers little help, try the models described in earlier
sections : 

Arrhenius●   

The (inverse) power rule for voltage●   

The exponential voltage model●   

Two temperature/voltage models●   

The electromigration model●   

Three stress models (temperature, voltage and humidity)●   

Eyring (for more than three stresses or when the above  models
are not satisfactory)

●   

The Coffin-Manson mechanical crack growth model●   

All but the last model (the Coffin-Manson) apply to chemical or
electronic failure mechanisms, and since temperature is almost always a
relevant stress for these mechanisms, the Arrhenius model is nearly
always a part of any more general model. The Coffin-Manson model
works well for many mechanical fatigue-related mechanisms. 

Sometimes models have to be adjusted to include a threshold level for
some stresses. In other words, failure might never occur due to a
particular mechanism unless a particular stress (temperature, for
example) is beyond a threshold value. A model for a
temperature-dependent mechanism with a threshold at T = T0 might
look like 

time to fail = f(T)/(T-T0)

8.2.4. How do you choose an appropriate physical acceleration model?
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for which f(T) could be Arrhenius. As the temperature decreases 
towards T0, time to fail increases toward infinity in this (deterministic)
acceleration model.

Models
derived
theoretically
have been
very
successful
and are
convincing

In some cases, a mathematical/physical description of the failure
mechanism can lead to an acceleration model. Some of the models
above were originally derived that way.

Simple
models are
often the
best

In general, use the simplest model (fewest parameters) you can. When
you have chosen a model, use visual tests and formal statistical fit tests
to confirm the model is consistent with your data. Continue to use the
model as long as it gives results that "work," but be quick to look for a
new model when it is clear the old one is no longer adequate.

There are some good quotes that apply here:

Quotes from
experts on
models

"All models are wrong, but some are useful." - George Box, and the
principle of Occam's Razor (attributed to the 14th century logician
William of Occam who said “Entities should not be multiplied
unnecessarily” - or something equivalent to that in Latin). 

A modern version of Occam's Razor is: If you have two theories that
both explain the observed facts then you should use the simplest one
until more evidence comes along - also called the Law of Parsimony. 

Finally, for those who feel the above quotes place too much emphasis on
simplicity, there are several appropriate quotes from Albert Einstein: 

"Make your theory as simple as possible, but no simpler"

"For every complex question there is a simple and wrong
solution."

8.2.4. How do you choose an appropriate physical acceleration model?
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8. Assessing Product Reliability
8.2. Assumptions/Prerequisites

8.2.5.What models and assumptions are
typically made when Bayesian methods
are used for reliability evaluation?

The basics of Bayesian methodology were explained earlier, along with some of
the advantages and disadvantages of using this approach. Here we only consider
the models and assumptions that are commonplace when applying Bayesian
methodology to evaluate system reliability. 

Bayesian
assumptions
for the
gamma
exponential
system
model

Assumptions: 

1. Failure times for the system under investigation can be adequately modeled
by the exponential distribution. For repairable systems, this means the HPP
model applies and the system is operating in the flat portion of the bathtub
curve. While Bayesian methodology can also be applied to non-repairable
component populations, we will restrict ourselves to the system application in
this Handbook. 

2. The MTBF for the system can be regarded as chosen from a prior distribution
model that is an analytic representation of our previous information or
judgments about the system's reliability. The form of this prior model is the
gamma distribution (the conjugate prior for the exponential model). The prior

model is actually defined for  = 1/MTBF since it is easier to do the
calculations this way. 

3. Our prior knowledge is used to choose the gamma parameters a and b for the

prior distribution model for . There are many possible ways to convert
"knowledge" to gamma parameters, depending on the form of the "knowledge"
- we will describe three approaches.

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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Several
ways to
choose the
prior
gamma
parameter
values

i) If you have actual data from previous testing done on the system (or a
system believed to have the same reliability as the one under
investigation), this is the most credible prior knowledge, and the easiest
to use. Simply set the gamma parameter a equal to the total number of
failures from all the previous data, and set the parameter b equal to the
total of all the previous test hours.

ii) A consensus method for determining a and b that works well is the
following: Assemble a group of engineers who know the system and its
sub-components well from a reliability viewpoint.
 

Have the group reach agreement on a reasonable MTBF they
expect the system to have. They could each pick a number they
would be willing to bet even money that the system would either
meet or miss, and the average or median of these numbers would
be their 50% best guess for the MTBF. Or they could just discuss
even-money MTBF candidates until a consensus is reached.
 

❍   

Repeat the process again, this time reaching agreement on a low
MTBF they expect the system to exceed. A "5%" value that they
are "95% confident" the system will exceed (i.e., they would give
19 to 1 odds) is a good choice. Or a "10%" value might be chosen
(i.e., they would give 9 to 1 odds the actual MTBF exceeds the low
MTBF). Use whichever percentile choice the group prefers.
 

❍   

Call the reasonable MTBF MTBF50 and the low MTBF you are
95% confident the system will exceed MTBF05. These two
numbers uniquely determine gamma parameters a and b that have

 percentile values at the right locations

We call this method of specifying gamma prior parameters the
50/95 method (or the 50/90 method if we use MTBF10 , etc.). A
simple way to calculate a and b for this method, using EXCEL, is
described below.

❍   

iii) A third way of choosing prior parameters starts the same way as the
second method. Consensus is reached on an reasonable MTBF, MTBF50.
Next, however, the group decides they want a somewhatweak prior that
will change rapidly, based on new test information. If the prior parameter
"a" is set to 1, the gamma has a standard deviation equal to its mean,
which makes it spread out, or "weak". To insure the 50th percentile is set

at 50 = 1/ MTBF50 , we have to choose b = ln 2 × MTBF50, which is

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?

http://www.itl.nist.gov/div898/handbook/apr/section2/apr25.htm (2 of 6) [5/1/2006 10:42:14 AM]



approximately .6931 × MTBF50. 

Note: As we will see when we plan Bayesian tests, this weak prior is
actually a very friendly prior in terms of saving test time

Many variations are possible, based on the above three methods. For example,
you might have prior data from sources that you  don't completely trust. Or you
might question whether the data really apply to the system under investigation.
You might decide to "weight" the prior data by .5, to "weaken" it. This can be
implemented by setting a = .5 x the number of fails in the prior data and b = .5
times the number of test hours. That spreads out the prior distribution more, and
lets it react quicker to new test data. 

Consequences

After a new
test is run,
the
posterior
gamma
parameters
are easily
obtained
from the
prior
parameters
by adding
the new
number of
fails to "a"
and the new
test time to
"b"

No matter how you arrive at values for the gamma prior parameters a and b, the
method for incorporating new test information is the same. The new
information is combined with the prior model to produce an updated or

posterior distribution model for . 

Under assumptions 1 and 2, when a new test is run with T system operating

hours and r failures, the posterior distribution for  is still a gamma, with new
parameters: 

a' = a + r, b' = b + T

In other words, add to a the number of new failures and add to b the number of
new test hours to obtain the new parameters for the posterior distribution. 

Use of the posterior distribution to estimate the system MTBF (with confidence,
or prediction, intervals) is described in the section on estimating reliability
using the Bayesian gamma model. 

Using EXCEL To Obtain Gamma Parameters

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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EXCEL can
easily solve
for gamma
prior
parameters
when using
the "50/95"
consensus
method

We will describe how to obtain a and b for the 50/95 method and indicate the
minor changes needed when any 2 other MTBF percentiles are used. The
step-by-step procedure is 

Calculate the ratio RT = MTBF50/MTBF05.1.  

Open an EXCEL spreadsheet and put any starting value guess for a in A1
- say 2.
 

 

Move to B1 and type the following expression:

= GAMMAINV(.95,A1,1)/GAMMAINV(.5,A1,1)

Press enter and a number will appear in B1. We are going to use the
"Goal Seek" tool EXCEL has to vary A1 until the number in B1 equals
RT.
 

2.  

Click on "Tools" (on the top menu bar) and then on "Goal Seek". A box
will open. Click on "Set cell" and highlight cell B1. $B$1 will appear in
the "Set Cell" window. Click on "To value" and type in the numerical
value for RT. Click on "By changing cell" and highlight A1 ($A$1 will
appear in "By changing cell"). Now click "OK" and watch the value of
the "a" parameter appear in A1.
 

3.  

Go to C1 and type 

= .5*MTBF50*GAMMAINV(.5, A1, 2)

and the value of b will appear in C1 when you hit enter. 

4.  

Example

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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An EXCEL
example
using the
"50/95"
consensus
method

A group of engineers, discussing the reliability of a new piece of equipment,
decide to use the 50/95 method to convert their knowledge into a Bayesian
gamma prior. Consensus is reached on a likely MTBF50 value of 600 hours and
a low MTBF05 value of 250. RT is 600/250 = 2.4. The figure below shows the
EXCEL 5.0 spreadsheet just prior to clicking "OK" in the "Goal Seek" box. 

After clicking "OK", the value in A1 changes from 2 to 2.862978. This new
value is the prior a parameter. (Note: if the group felt 250 was a MTBF10 value,
instead of a MTBF05 value, then the only change needed would be to replace
0.95 in the B1 equation by 0.90. This would be the "50/90" method.) 

The figure below shows what to enter in C1 to obtain the prior "b" parameter
value of 1522.46. 

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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The gamma prior with parameters a = 2.863 and b = 1522.46 will have
(approximately) a probability of 50% of λ being below 1/600 = .001667 and a

probability of 95% of  being below 1/250 = .004. This can be checked by
typing 

=GAMMDIST(.001667,2.863,(1/1522.46), TRUE)
and

=GAMMDIST(.004,2.863,(1/1522.46), TRUE) 

as described when gamma EXCEL functions were introduced in Section 1. 

This example will be continued in Section 3, in which the Bayesian test time
needed to confirm a 500 hour MTBF at 80% confidence will be derived. 

8.2.5. What models and assumptions are typically made when Bayesian methods are used for reliability evaluation?
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8. Assessing Product Reliability

8.3.Reliability Data Collection

In order to assess or improve reliability, it is usually necessary to have
failure data. Failure data can be obtained from field studies of system
performance or from planned reliability tests, sometimes called Life
Tests. This section focuses on how to plan reliability tests. The aim is to
answer questions such as: how long should you test, what sample size
do you need and what test conditions or stresses need to be run?

Detailed
contents of
Section 8.3

The section detailed outline follows. 

3. Reliability Data Collection 

How do you plan a reliability assessment test? 

Exponential life distribution (or HPP model) tests1.  

Lognormal or Weibull tests2.  

Reliability growth tests (Duane model) 3.  

Accelerated life tests4.  

Bayesian gamma prior model tests 5.  

 

1.  

8.3. Reliability Data Collection
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8. Assessing Product Reliability
8.3. Reliability Data Collection

8.3.1.How do you plan a reliability
assessment test?

The Plan for
a reliability
test ends
with a
detailed
description
of the
mechanics
of the test
and starts
with stating
your
assumptions
and what
you want to
discover or
prove

Planning a reliability test means: 

How long should you test?●   

How many units have to be put on test?

For repairable systems, this is often limited to 1.❍   

●   

If acceleration modeling is part of the experimental plan●   

What combination of stresses and how many experimental
cells?

❍   

How many units go in each cell?❍   

The answers to these questions depend on: 

What models are you assuming?●   

What decisions or conclusions do you want to make after running
the test and analyzing the data?

●   

What risks are you willing to take of making wrong decisions or
conclusions?

●   

It is not always possible, or practical, to completely answer all of these
questions for every model we might want to use. This section looks at
answers, or guidelines, for the following models: 

exponential or HPP Model●   

Weibull or lognormal model●   

Duane or NHPP Power Law model●   

acceleration models●   

Bayesian gamma prior model●   

8.3.1. How do you plan a reliability assessment test?
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.1. Exponential life distribution (or HPP
model) tests

Using an
exponential
(or HPP)
model to test
whether a
system
meets its
MTBF
requirement
is common
in industry

Exponential tests are common in industry for verifying that tools,
systems or equipment are meeting their reliability requirements for
Mean Time Between Failure (MTBF). The assumption is that the system
has a constant failure (or repair) rate, which is the reciprocal of the
MTBF. The waiting time between failures follows the exponential
distribution model.

A typical test situation might be: a new complex piece of equipment or
tool is installed in a factory and monitored closely for a period of several
weeks to several months. If it has no more than a pre-specified number
of failures during that period, the equipment "passes" its reliability
acceptance test.

This kind of reliability test is often called a Qualification Test or a
Product Reliability Acceptance Test (PRAT). Contractual penalties
may be invoked if the equipment fails the test. Everything is pegged to
meeting a customer MTBF requirement at a specified confidence level.

How Long Must You Test A Piece of Equipment or a System In
order to Assure a Specified MTBF at a Given Confidence?

You start with a given MTBF objective, say M, and a confidence level,
say 100 × (1- ). You need one more piece of information to determine
the test length: how many fails do you want to allow and still "pass" the
equipment? The more fails allowed, the longer the test required.
However, a longer test allowing more failures has the desirable feature
of making it less likely a good piece of equipment will be rejected
because of random "bad luck" during the test period.

The recommended procedure is to iterate on r = the number of allowable
fails until a larger r would require an unacceptable test length. For any
choice of r, the corresponding test length is quickly calculated by
multiplying M (the objective) by the factor in the table below

8.3.1.1. Exponential life distribution (or HPP model) tests
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corresponding to the r-th row and the desired confidence level column.

For example, to confirm a 200-hour MTBF objective at 90%
confidence, allowing up to 4 failures on the test, the test length must be
200 × 7.99 = 1598 hours. If this is unacceptably long, try allowing only
3 fails for a test length of 200 × 6.68 = 1336 hours. The shortest test
would allow no fails and last 200 × 2.3 = 460 hours. All these tests
guarantee a 200-hour MTBF at 90% confidence, when the equipment
passes. However, the shorter test are much less "fair" to the supplier in
that they have a large chance of failing a marginally acceptable piece of
equipment.

Use the Test
length Table
to determine
how long to
test

Test Length Guide Table

NUMBER
OF

FAILURES
ALLOWED

FACTOR FOR GIVEN CONFIDENCE LEVELS

r 50% 60% 75% 80% 90% 95%
0 .693 .916 1.39 1.61 2.30 3.00
1 1.68 2.02 2.69 2.99 3.89 4.74
2 2.67 3.11 3.92 4.28 5.32 6.30
3 3.67 4.18 5.11 5.52 6.68 7.75
4 4.67 5.24 6.27 6.72 7.99 9.15
5 5.67 6.29 7.42 7.90 9.28 10.51
6 6.67 7.35 8.56 9.07 10.53 11.84
7 7.67 8.38 9.68 10.23 11.77 13.15
8 8.67 9.43 10.80 11.38 13.00 14.43
9 9.67 10.48 11.91 12.52 14.21 15.70
10 10.67 11.52 13.02 13.65 15.40 16.96
15 15.67 16.69 18.48 19.23 21.29 23.10
20 20.68 21.84 23.88 24.73 27.05 29.06

The formula to calculate the factors in the table is:

and a Dataplot expression to calculate test length factors is

8.3.1.1. Exponential life distribution (or HPP model) tests
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Dataplot
expression
for
obtaining
same factors
as in Table

LET FAC = .5*CHSPPF([1- ],[2*(r+1)])

The equivalent EXCEL expression for FAC is

= .5* CHIINV(1- , 2*(r+1))).

Example: A new factory tool must meet a 400-hour MTBF requirement
at 80% confidence. You have up to two months of 3-shift operation to
decide whether the tool is acceptable. What is a good test plan?

Two months of around-the-clock operation, with some time off for
maintenance and repairs, amounts to a maximum of about 1300 hours.
The 80% confidence factor for r = 1 is 2.99, so a test of 400 × 2.99 =
about 1200 hours (with up to 1 fail allowed) is the best that can be done.

Shorten
required test
times by
testing more
than 1
system

NOTE: Exponential test times can be shortened significantly if several
similar tools or systems can be put on test at the same time. Test time
means the same as "tool hours" and 1 tool operating for 1000 hours is
equivalent (as far as the exponential model is concerned) to 2 tools
operating for 500 hours each, or 10 tools operating for 100 hours each.
Just count all the fails from all the tools and the sum of the test hours
from all the tools.

8.3.1.1. Exponential life distribution (or HPP model) tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.2.Lognormal or Weibull tests

Planning
reliability tests
for
distributions
other than the
exponential is
difficult and
involves a lot
of guesswork

Planning a reliability test is not simple and straightforward when the
assumed model is lognormal or Weibull. Since these models have two
parameters, no estimates are possible without at least two test failures,
and good estimates require considerably more than that. Because of
censoring, without a good guess ahead of time at what the unknown
parameters are, any test plan may fail. 

However, it is often possible to make a good guess ahead of time
about at least one of the unknown parameters - typically the "shape"

parameter (  for the lognormal or  for the Weibull). With one
parameter assumed known, test plans can be derived that assure the
reliability or failure rate of the product tested will be acceptable. 

Lognormal Case (shape parameter known): The lognormal model
is used for many microelectronic wear-out failure mechanisms, such
as electromigration. As a production monitor, samples of
microelectronic chips taken randomly from production lots might be
tested at levels of voltage and temperature that are high enough to
significantly accelerate the occurrence of electromigration failures.
Acceleration factors are known from previous testing and range from
several hundred to several thousand.

8.3.1.2. Lognormal or Weibull tests
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Lognormal test
plans,
assuming
sigma and the
acceleration
factor are
known

The goal is to construct a test plan (put n units on stress test for T
hours and accept the lot if no more than r failures occur). The
following assumptions are made:

The life distribution model is lognormal●   

Sigma =  is known from past testing and does not vary

appreciably from lot to lot

●   

Lot reliability varies because T50's (the lognormal median or
50th percentile) differ from lot to lot

●   

The acceleration factor from high stress to use stress is a
known quantity "A"

●   

A stress time of T hours is practical as a line monitor●   

A nominal use T50 of Tu (combined with ) produces an
acceptable use CDF (or use reliability function). This is
equivalent to specifying an acceptable use CDF at, say,
100,000 hours to be a given value p0 and calculating Tu via:

where  is the inverse of the standard normal distribution 

●   

An unacceptable use CDF of p1 leads to a "bad" use T50 of Tb ,
using the same equation as above with po replaced by p1

●   

The acceleration factor A is used to calculate a "good" or acceptable
proportion of failures pa at stress and a "bad" or unacceptable
proportion of fails pb:

where  is the standard normal CDF. This reduces the reliability
problem to a well-known Lot Acceptance Sampling Plan (LASP)
problem, which was covered in Chapter 6. 

If the sample size required to distinguish between pa and pb turns out
to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
equations give a methodology for planning ongoing reliability tests
under a lognormal model assumption.

8.3.1.2. Lognormal or Weibull tests

http://www.itl.nist.gov/div898/handbook/apr/section3/apr312.htm (2 of 4) [5/1/2006 10:42:17 AM]

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc222.htm
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc222.htm


Weibull test
plans,
assuming
gamma and
the
acceleration.
factor are
known

Weibull Case (shape parameter known): The assumptions and
calculations are similar to those made for the lognormal: 

The life distribution model is Weibull●   

Gamma =  is known from past testing and does not vary

appreciably from lot to lot

●   

Lot reliability varies because 's (the Weibull characteristic
life or 62.3 percentile) differ from lot to lot

●   

The acceleration factor from high stress to use stress is a
known quantity "A"

●   

A stress time of T hours is practical as a line monitor●   

A nominal use  of u (combined with ) produces an
acceptable use CDF (or use reliability function). This is
equivalent to specifying an acceptable use CDF at, say,
100,000 hours to be a given value p0 and calculating u

●   

An unacceptable use CDF of p1 leads to a "bad" use  of  ,

using the same equation as above with po replaced by p1

●   

The acceleration factor A is used next to calculate a "good" or
acceptable proportion of failures pa at stress and a "bad" or
unacceptable proportion of failures pb: 

This reduces the reliability problem to a Lot Acceptance Sampling
Plan (LASP) problem, which was covered in Chapter 6. 

If the sample size required to distinguish between pa and pb turns out
to be too large, it may be necessary to increase T or test at a higher
stress. The important point is that the above assumptions and
equations give a methodology for planning ongoing reliability tests
under a Weibull model assumption. 

Planning Tests to Estimate Both Weibull or Both Lognormal
Parameters

8.3.1.2. Lognormal or Weibull tests
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Rules-of-thumb
for general
lognormal or
Weibull life
test planning

All that can be said here are some general rules-of-thumb: 

If you can observe at least 10 exact times of failure, estimates
are usually reasonable - below 10 failures the critical shape
parameter may be hard to estimate accurately. Below 5 failures,
estimates are often very inaccurate.

1.  

With readout data, even with more than 10 total failures, you
need failures in three or more readout intervals for accurate
estimates.

2.  

When guessing how many units to put on test and for how
long, try various reasonable combinations of distribution
parameters to see if the corresponding calculated proportion of
failures expected during the test, multiplied by the sample size,
gives a reasonable number of failures.

3.  

As an alternative to the last rule, simulate test data from
reasonable combinations of distribution parameters and see if
your estimates from the simulated data are close to the
parameters used in the simulation. If a test plan doesn't work
well with simulated data, it is not likely to work well with real
data.

4.  

8.3.1.2. Lognormal or Weibull tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.3.Reliability growth (Duane model)

Guidelines
for planning
how long to
run a
reliability
growth test

A reliability improvement test usually takes a large resource
commitment, so it is important to have a way of estimating how long a
test will be required. The following procedure gives a starting point for
determining a test time:

Guess a starting value for , the growth slope. Some guidelines
were previously discussed. Pick something close to 0.3 for a
conservative estimate (perhaps a new cross-functional team will
be working on the improvement test or the system to be improved
has many new parts with possibly unknown failure mechanisms),
or close to 0.5 for a more optimistic estimate.

1.  

Use current data and engineering estimates to arrive at a
consensus for what the starting MTBF for the system is. Call this
M1. 

2.  

Let MT be the target MTBF (the customer requirement). Then the
improvement needed on the test is given by
IM = MT/M1

3.  

A first pass estimate of the test time needed is4.  

This estimate comes from using the starting MTBF of M1 as the MTBF
after 1 hour on test and using the fact that the improvement from 1 hour

to T hours is just .

8.3.1.3. Reliability growth (Duane model)
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Make sure
test time
makes
engineering
sense

The reason the above is just a first pass estimate is it will give

unrealistic (too short) test times when a high  is assumed. A very
short reliability improvement test makes little sense because a minimal
number of failures must be observed before the improvement team can
determine design and parts changes that will "grow" reliability. And it
takes time to implement these changes and observe an improved repair
rate. 

Iterative
simulation is
an aid for
test
planning

Simulation methods can also be used to see if a planned test is likely to
generate data that will demonstrate an assumed growth rate.

8.3.1.3. Reliability growth (Duane model)
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.4.Accelerated life tests

Accelerated
testing is
needed when
testing even
large sample
sizes at use
stress would
yield few or
no failures
within a
reasonable
time

Accelerated life tests are component life tests with components operated
at high stresses and failure data observed. While high stress testing can
be performed for the sole purpose of seeing where and how failures
occur and using that information to improve component designs or
make better component selections, we will focus in this section on
accelerated life testing for the following two purposes: 

To study how failure is accelerated by stress and fit an
acceleration model to data from multiple stress cells

1.  

To obtain enough failure data at high stress to accurately project
(extrapolate) what the CDF at use will be.

2.  

If we already know the acceleration model (or the acceleration factor to
typical use conditions from high stress test conditions), then the
methods described two pages ago can be used. We assume, therefore,
that the acceleration model is not known in advance. 

Test
planning
means
picking
stress levels
and sample
sizes and
test times to
produce
enough data
to fit models
and make
projections

Test planning and operation for a (multiple) stress cell life test
experiment consists of the following: 

Pick several combinations of the relevant stresses (the stresses
that accelerate the failure mechanism under investigation). Each
combination is a "stress cell". Note that you are planning for only
one mechanism of failure at a time. Failures on test due to any
other mechanism will be considered censored run times.

●   

Make sure stress levels used are not too high - to the point where
new failure mechanisms that would never occur at use stress are
introduced. Picking a maximum allowable stress level requires
experience and/or good engineering judgment.

●   

Put random samples of components in each stress cell and run the
components in each cell for fixed (but possibly different) lengths
of time.

●   

Gather the failure data from each cell and use the data to fit an
acceleration model and a life distribution model and use these
models to project reliability at use stress conditions.

●   

8.3.1.4. Accelerated life tests
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Test planning would be similar to topics already covered in the chapters
that discussed modeling and experimental design except for one
important point. When you test components in a stress cell for a fixed
length test, it is typical that some (or possibly many) of the components
end the test without failing. This is the censoring problem, and it greatly
complicates experimental design to the point at which it becomes almost
as much of an art (based on engineering judgment) as a statistical
science.

 An example will help illustrate the design issues. Assume a metal
migration failure mode is believed to follow the 2-stress temperature
voltage model given by 

Normal use conditions are 4 volts and 25 degrees Celsius, and the high
stress levels under consideration are 6, 8,12 volts and 85o, 105o and
125o. It probably would be a waste of resources to test at (6v, 85o), or
even possibly (8v, 85o) or (6v,105o) since these cells are not likely to
have enough stress acceleration to yield a reasonable number of failures
within typical test times. 

If you write all the 9 possible stress cell combinations in a 3x3 matrix
with voltage increasing by rows and temperature increasing by columns,
the result would look like the matrix below: 

Matrix Leading to "Backward L Design"

6v, 85o 6v, 105o 6v, 125o

8v, 85o 8v,105o 8v,125o

12v,85o 12v,105o 12v,125o

 

8.3.1.4. Accelerated life tests
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"Backwards
L" designs
are common
in
accelerated
life testing.
Put more
experimental
units in
lower stress
cells.

The combinations in bold are the most likely design choices covering
the full range of both stresses, but still hopefully having enough
acceleration to produce failures. This is the so-called "backwards L"
design commonly used for acceleration modeling experiments.

Note: It is good design practice to put more of your test units in the
lower stress cells, to make up for the fact that these cells will have a
smaller proportion of units failing.

Sometimes
simulation is
the best way
to learn
whether a
test plan has
a chance of
working

Design by Simulation:

A lengthy, but better way to choose a test matrix is the following: 

Pick an acceleration model and a life distribution model (as
usual).

●   

Guess at the shape parameter value of the life distribution model
based on literature studies or earlier experiments. The shape
parameter should remain the same for all stress cells. Choose a
scale parameter value at use so that the use stress CDF exactly
meets requirements (i.e., for the lognormal, pick a use T50 that
gives the desired use reliability - for a Weibull model choice, do
the same for the characteristic life parameter).

●   

Guess at the acceleration model parameters values ( H and ,

for the 2-stress model shown above). Again, use whatever is in
the literature for similar failure mechanisms or data from earlier
experiments).

●   

Calculate acceleration factors from any proposed test cells to  use
stress and divide the use scale parameter by these acceleration
factors to obtain "trial" cell scale parameters.

●   

Simulate cell data for each proposed stress cell using the derived
cell scale parameters and the guessed shape parameter.

●   

Check that every proposed cell has sufficient failures to give
good estimates. 

●   

Adjust the choice of stress cells and the sample size allocations
until you are satisfied that, if everything goes as expected, the
experiment will yield enough data to provide good estimates of
the model parameters.

●   

8.3.1.4. Accelerated life tests
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After you
make
advance
estimates, it
is sometimes
possible to
construct an
optimal
experimental
design - but
software for
this is
scarce

Optimal Designs:

Recent work on designing accelerated life tests has shown it is possible,
for a given choice of models and assumed values of the unknown
parameters, to construct an optimal design (one which will have the best
chance of providing good sample estimates of the model parameters).
These optimal designs typically select stress levels as far apart as
possible and heavily weight the allocation of sample units to the lower
stress cells. However, unless the experimenter can find software that
incorporates these optimal methods for his or her particular choice of
models, the methods described above are the most practical way of
designing acceleration experiments. 

8.3.1.4. Accelerated life tests
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8. Assessing Product Reliability
8.3. Reliability Data Collection
8.3.1. How do you plan a reliability assessment test?

8.3.1.5.Bayesian gamma prior model

How to
plan a
Bayesian
test to
confirm a
system
meets its
MTBF
objective

Review Bayesian basics and assumptions, if needed. We start at the point
when gamma prior parameters a and b have already been determined.
Assume we have a given MTBF objective, say M, and a desired confidence
level, say 100× (1- ). We want to confirm the system will have at least an
MTBF of at least M at the 100×(1- ) confidence level. As in the section
on classical (HPP) test plans, we pick a number of failures, r, that we can
allow on the test. We need a test time T such that we can observe up to r
failures and still "pass" the test. If the test time is too long (or too short),
we can iterate with a different choice of r. 

When the test ends, the posterior gamma distribution will have (worst case
- assuming exactly r failures) new parameters of 

a' = a + r, b' = b + T

and passing the test means that the failure rate  the upper 100×(1- )

percentile for the posterior gamma, has to equal the target failure rate 1/M.
But this percentile is, by definition, G-1(1- ;a',b'), with G-1 denoting the
inverse of the gamma distribution with parameters a', b'. We can find the
value of T that satisfies G-1 (1- ;a',b') = 1/M by trial and error, or by
using "Goal Seek" in EXCEL. However, based on the properties of the
gamma distribution, it turns out that we can calculate T directly by using

T = .5M × G-1 (1- ; 2a',.5) - b

8.3.1.5. Bayesian gamma prior model
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Excel will
easily do
the
required
calculations

Solving For T = Bayesian Test Time Using EXCEL or Dataplot

The EXCEL expression for the required Bayesian test time to confirm a
goal of M at 100×(1-a)% confidence, allowing r failures and assuming
gamma prior parameters of a and b is 

= .5*M*GAMMAINV( (1- ),((a+r)),2) - b

and the equivalent Dataplot expression is 

LET BAYESTIME = M*GAMPPF((1- ),(a+r)) - b.

Special Case: The Prior Has a = 1 (The "Weak" Prior)

When the
prior is a
weak prior
with a = 1,
the
Bayesian
test is
always
shorter
than the
classical
test

There is a very simple way to calculate the required Bayesian test time,
when the prior is a weak prior with a = 1. Just use the Test Length Guide
Table to calculate the classical test time. Call this Tc. The Bayesian test
time T is just Tc minus the prior parameter b (i.e., T = Tc - b). If the b
parameter was set equal to (ln 2) × MTBF50 (with MTBF50  the consensus
choice for an "even money" MTBF), then 

T = Tc - (ln 2) x MTBF50

This shows that when a weak prior is used, the Bayesian test time is always
less than the corresponding classical test time. That is why this prior is also
known as a friendly prior. 

Note: In general, Bayesian test times can be shorter, or longer, than the
corresponding classical test times, depending on the choice of prior
parameters. However, the Bayesian time will always be shorter when the
prior parameter a is less than, or equal to, 1. 

Example: Calculating a Bayesian Test Time

EXCEL
example

A new piece of equipment has to meet a MTBF requirement of 500 hours
at 80% confidence. A group of engineers decide to use their collective
experience to determine a Bayesian gamma prior using the 50/95 method
described in Section 2. They think 600 hours is a likely MTBF value and
they are very confident that the MTBF will exceed 250. Following the
example in Section 2, they determine that the gamma prior parameters are
a = 2.863 and b = 1522.46. 

Now they want to determine an appropriate test time so that they can
confirm a MTBF of 500 with at least 80% confidence, provided they have
no more than 2 failures. 

Using an EXCEL spreadsheet, type the expression 

= .5*500*GAMMAINV(.8,((a+r)),2) - 1522.46

8.3.1.5. Bayesian gamma prior model
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and the required test time of 1756 hours will appear (as shown below).

Using Dataplot, the same result would be obtained from 

LET BAYESTIME = 500*GAMPPF(.8,4.863) - 1522.46

To compare this result to the classical test time required,  use the Test
Length Guide Table. The table factor is 4.28, so the test time needed is 500
x 4.28 = 2140 hours for a non-Bayesian test. The Bayesian test saves about
384 hours, or an 18% savings. If the test is run for 1756 hours, with no
more than 2 failures, then an MTBF of at least 500 hours has been
confirmed at 80% confidence.

If, instead, the engineers had decided to use a weak prior with an MTBF50
of 600, the required test time would have been 

2140 - 600 x ln 2 = 1724 hours

8.3.1.5. Bayesian gamma prior model
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8. Assessing Product Reliability

8.4.Reliability Data Analysis

After you have obtained component or system reliability data, how do
you fit life distribution models, reliability growth models, or
acceleration models? How do you estimate failure rates or MTBF's and
project component or system reliability at use conditions? This section
answers these kinds of questions.

Detailed
outline for
Section 4

The detailed outline for section 4 follows. 

4. Reliability Data Analysis 

How do you estimate life distribution parameters from censored
data? 

Graphical estimation 1.  

Maximum Likelihood Estimation (MLE) 2.  

A Weibull MLE example 3.  

1.  

How do you fit an acceleration model? 

Graphical estimation 1.  

Maximum likelihood2.  

Fitting models using degradation data instead of failures 3.  

2.  

How do you project reliability at use conditions? 3.  

How do you compare reliability between two or more
populations? 

4.  

How do you fit system repair rate models?

Constant repair rate (HPP/Exponential) model1.  

Power law (Duane) model 2.  

Exponential law model3.  

5.  

How do you estimate reliability using the Bayesian gamma prior
model?

6.  

8.4. Reliability Data Analysis
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8.4. Reliability Data Analysis
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.1.How do you estimate life distribution
parameters from censored data?

Graphical
estimation
methods
(aided by
computer
line fits) are
easy and
quick 

Maximum
likelihood
methods are
usually
more
precise - but
require
special
software

Two widely used general methods will be described in this section: 

Graphical estimation●   

Maximum Likelihood Estimation (MLE)●   

Recommendation On Which Method to Use

Maximum likelihood estimation (except when the failure data are very
sparse - i.e., only a few failures) is a more precise and flexible method.
However, with censored data, the method of maximum likelihood
estimation requires special computer programs for distributions other
than the exponential. This is no longer an obstacle since, in recent years,
many statistical software packages have added reliability platforms that
will calculate MLE's and most of these packages will estimate
acceleration model parameters and give confidence bounds, as well. It is
even relatively easy to write spreadsheet log likelihood formulas and use
EXCEL's built in SOLVER routine to quickly calculate MLE's.

If important business decisions are based on reliability projections made
from life test data and acceleration modeling, then it pays to obtain
state-of-the art MLE reliability software. Otherwise, for monitoring and
tracking reliability, estimation methods based on computer-augmented
graphical procedures will often suffice. 

8.4.1. How do you estimate life distribution parameters from censored data?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.1.Graphical estimation

Every line
on
probability
paper
uniquely
identifies
distribution
parameters

Once you have calculated plotting positions from your failure data, and
put the points on the appropriate graph paper for your chosen model,
parameter estimation follows easily. But along with the mechanics of
graphical estimation, be aware of both the advantages and the
disadvantages of graphical estimation methods. 

Most
probability
papers have
simple
procedures
that go from
a line to the
underlying
distribution
parameter
estimates

Graphical Estimation Mechanics:

If you draw a line through the points, and the paper is commercially
designed probability paper, there are usually simple rules to find
estimates of the slope (or shape parameter) and the scale parameter. On
lognormal paper with time on the x-axis and cum percent on the y-axis,
draw horizontal lines from the 34th and the 50th percentiles across to
the line, and drop vertical lines to the time axis from these intersection
points. The time corresponding to the 50th percentile is the T50 estimate.
Divide T50 by the time corresponding to the 34th percentile (this is
called T34). The natural logarithm of that ratio is the estimate of sigma,

or the slope of the line (  = ln (T50 / T34). 

On commercial Weibull probability paper there is often a horizontal line
through the 62.3 percentile point. That estimation line intersects the line
through the points at a time that is the estimate of the characteristic life
parameter . In order to estimate the line slope (or the shape parameter 

), some papers have a special point on them called an estimation
point. You drop a line from the estimation point perpendicular to the
fitted line and look at where it passes through a special estimation

scale. The estimate of  is read off the estimation scale where the line
crosses it.

Other papers may have variations on the methods described above.

8.4.1.1. Graphical estimation
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Using a
computer
generated
line fitting
routine
removes
subjectivity
and can
lead directly
to computer
parameter
estimates
based on the
plotting
positions

To remove the subjectivity of drawing a line through the points, a least
squares (regression) fit can be performed using the equations described
in the section on how special papers work. An example of this for the
Weibull, using the Dataplot FIT program, was also shown in that
section. A SAS JMP™ example of a Weibull plot for the same data is
shown later in this section.

Finally, if you have exact times and complete samples (no censoring),
Dataplot has built-in Probability Plotting functions and built-in Weibull
paper - examples were shown in the sections on the various life
distribution models.

Do
probability
plots even if
you use
some other
method for
the final
estimates

Advantages of Graphical Methods of Estimation:
Graphical methods are quick and easy to use and make visual
sense

●   

Calculations can be done with little or no special software needed.●   

Visual test of model (i.e., how well the points line up) is an
additional benefit

●   

Disadvantages of Graphical Methods of Estimation

Perhaps the
worst
drawback of
graphical
estimation is
you cannot
get
legitimate
confidence
intervals for
the
estimates 

The statistical properties of graphical estimates (i.e., how precise are
they on the average) are not good

they are biased●   

even with large samples, they do not become minimum variance
(i.e., most precise) estimates

●   

graphical methods do not give confidence intervals for the
parameters (intervals generated by a regression program for this
kind of data are incorrect)

●   

Formal statistical tests about model fit or parameter values cannot
be performed with graphical methods

●   

As we will see in the next section, Maximum Likelihood Estimates
overcome all these disadvantages - at least for reliability data sets with a
reasonably large number of failures - at a cost of losing all the
advantages listed above for graphical estimation. 

8.4.1.1. Graphical estimation
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.2.Maximum likelihood estimation

There is
nothing
visual about
the
maximum
likelihood
method - but
it is a
powerful
method and,
at least for
large
samples,
very precise

Maximum likelihood estimation begins with writing a mathematical
expression known as the Likelihood Function of the sample data.
Loosely speaking, the likelihood of a set of data is the probability of
obtaining that particular set of data, given the chosen probability
distribution model. This expression contains the unknown model
parameters. The values of these parameters that maximize the sample
likelihood are known as the Maximum Likelihood Estimatesor MLE's. 

Maximum likelihood estimation is a totally analytic maximization
procedure. It applies to every form of censored or multicensored data,
and it is even possible to use the technique across several stress cells and
estimate acceleration model parameters at the same time as life
distribution parameters. Moreover, MLE's and Likelihood Functions
generally have very desirable large sample properties: 

they become unbiased minimum variance estimators as the
sample size increases

●   

they have approximate normal distributions and approximate
sample variances that can be calculated and used to generate
confidence bounds

●   

likelihood functions can be used to test hypotheses about models
and parameters 

●   

With small
samples,
MLE's may
not be very
precise and
may even
generate a
line that lies
above or
below the
data points

There are only two drawbacks to MLE's, but they are important ones: 

With small numbers of failures (less than 5, and sometimes less
than 10 is small), MLE's can be heavily biased and the large
sample optimality properties do not apply

●   

Calculating MLE's often requires specialized software for solving
complex non-linear equations. This is less of a problem as time
goes by, as more statistical packages are upgrading to contain
MLE analysis capability every year.

●   

Additional information about maximum likelihood estimatation can be
found in Chapter 1.

8.4.1.2. Maximum likelihood estimation
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Likelihood
equation for
censored
data 

Likelihood Function Examples for Reliability Data:

Let f(t) be the PDF and F(t) the CDF for the chosen life distribution
model. Note that these are functions of t and the unknown parameters of
the model. The likelihood function for Type I Censored data is: 

with C denoting a constant that plays no role when solving for the
MLE's. Note that with no censoring, the likelihood reduces to just the
product of the densities, each evaluated at a failure time. For Type II
Censored Data, just replace T above by the random end of test time tr. 

The likelihood function for readout data is:

with F(T0) defined to be 0. 

In general, any multicensored data set likelihood will be a constant
times a product of terms, one for each unit in the sample, that look like
either f(ti), [F(Ti)-F(Ti-1)], or [1-F(ti)], depending on whether the unit
was an exact time failure at time ti, failed between two readouts Ti-1 and
Ti, or survived to time ti and was not observed any longer. 

The general mathematical technique for solving for MLE's involves
setting partial derivatives of ln L (the derivatives are taken with respect
to the unknown parameters) equal to zero and solving the resulting
(usually non-linear) equations. The equation for the exponential model
can easily be solved, however. 
 

8.4.1.2. Maximum likelihood estimation
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MLE for the
exponential
model
parameter 

 turns out

to be just
(total # of
failures)
divided by
(total unit
test time)

MLE's for the Exponential Model (Type I Censoring):

Note: The MLE of the failure rate (or repair rate) in the exponential case
turns out to be the total number of failures observed divided by the total
unit test time. For the MLE of the MTBF, take the reciprocal of this or
use the total unit test hours divided by the total observed failures. 

There are examples of Weibull and lognormal MLE analysis, using SAS
JMP™ software, later in this section.

8.4.1.2. Maximum likelihood estimation
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.1. How do you estimate life distribution parameters from censored data?

8.4.1.3.A Weibull maximum likelihood estimation
example

Reliability
analysis
with a
popular
statistical
software
package

SAS JMPTM Example

SAS JMP software has excellent survival analysis (i.e., reliability analysis) capabilities,
incorporating both graphical plotting and maximum likelihood estimation and covering
the exponential, Weibull, lognormal and extreme value distribution models. 

Use of JMP (Release 3) for plotting Weibull censored data and estimating parameters
will be illustrated using data from a previous example. 

Steps in a
Weibull
analysis
using JMP
software

Weibull Data Example

Failure times were 55, 187, 216, 240, 244, 335, 361, 373, 375, and 386 hours, and 10
unfailed units were removed from test at 500 hours. The steps in creating a JMP
worksheet and analyzing the data are as follows:

1. Set up three columns, one for the failure and censoring times ("Time"), another to
indicate whether the time is a failure or a censoring time ("Cens") and the third column
to show how many units failed or were censored at that time ("Freq"). Fill in the 11 times
above, using "0" in Cens to indicate a failure and "1" in Cens to indicate a censoring
time. The spreadsheet will look as follows:

8.4.1.3. A Weibull maximum likelihood estimation example
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You can obtain a copy of this JMP worksheet by clicking here mleex.jmp . If your
browser is configured to bring up JMP automatically, you can try out the example as you
read about it.

2. Click on Analyze, choose "Survival" and then choose "Kaplan - Meier Method". Note:
Some software packages (and other releases of JMP) might use the name "Product Limit
Method" or "Product Limit Survival Estimates" instead of the equivalent name
"Kaplan-Meier". 

3. In the box that appears, select the columns from mleex that correspond to "Time",
"Censor" and "Freq", put them in the corresponding slots on the right (see below) and
click "OK". 

8.4.1.3. A Weibull maximum likelihood estimation example
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4. Click "OK" and the analysis results appear. You may have to use the "check mark" tab
on the lower left to select Weibull Plot (other choices are Lognormal and Exponential).
You may also have to open the tab next to the words "Weibull Plot" and select "Weibull
Estimates". The results are shown below. 

8.4.1.3. A Weibull maximum likelihood estimation example
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Note: JMP uses the parameter  for the Weibull characteristic life (as does Dataplot),

and the parameter  for the shape (Dataplot uses ). The Extreme Value distribution
parameter estimates are for the distribution of "ln time to fail" and have the relationship 

5. There is an alternate way to obtain some of the same results, which can also be used to
fit models when there are additional "effects" such as temperature differences or vintage
or plant of manufacturing differences. Instead of clicking "Kaplan - Meier Method" in
step 2, chose "Parametric Model" after selecting "Survival" from the "Analysis" choices.
The screen below appears. Repeat step 3 and make sure "Weibull" appears as the "Get
Model" choice. In this example there are no other effects to "Add" (the acceleration
model example later on will illustrate how to add a temperature effect). Click "Run

8.4.1.3. A Weibull maximum likelihood estimation example
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Model" to obtain the results below. This time, you need to use the check symbol tab to
obtain confidence limits. Only the Extreme Value distribution parameter estimates are
displayed. 

8.4.1.3. A Weibull maximum likelihood estimation example
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Limitations
and a
warning
about the
Likelihood
calculation
in JMP

Notes: 

1. The built in reliability analysis routine that iscurrently part of JMP only handles exact
time of failure data with possible right censoring. However, the use of templates
(provided later in the Handbook) for either Weibull or lognormal data extends JMP
analysis capabilities to handle readout (interval) data and any type of censoring or
truncation. This will be described in the acceleration model example later on. 

2. The "Model Fit" screen for the Weibull model gives a value for -Loglikelihood for the
Weibull fit. This should be the negative of the maximized likelihood function. However,
JMP leaves out a term consisting of the sum of all the natural logarithms of the times of
failures in the data set. This does not affect the calculation of MLE's or confidence
bounds but can be confusing when comparing results between different software
packages. In the example above, the sum of the ln times is ln 55 + ln 187 + . . . + ln 386
= 55.099 and the correct maximum log likelihood is - (20.023 + 55.099) = - 75.122. 

3. The omission of the sum of the ln times of failures in the likelihood also occurs when
fitting lognormal and exponential models. 

4. Different releases of JMP may, of course, operate somewhat differently. The analysis
shown here used release 3.2.2.

Conclusions

MLE analysis is an accurate and easy way to estimate life distribution parameters,
provided that a good software analysis package is available. The package should also
calculate confidence bounds and loglikelihood values. JMP has this capability, as do
several other commercial statistical analysis packages.

8.4.1.3. A Weibull maximum likelihood estimation example
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.2.How do you fit an acceleration
model?

Acceleration
models can
be fit by
either
graphical
procedures
or maximum
likelihood
methods

As with estimating life distribution model parameters, there are two
general approaches for estimating acceleration model parameters: 

Graphical estimation  (or computer procedures based on a 
graphical approach)

●   

Maximum Likelihood Estimation  (an analytic approach based on
writing the likelihood of all the data across all the cells,
incorporating the acceleration model).

●   

The same comments and recommendations concerning these methods
still apply. Note that it is even harder, however, to find useful software
programs that will do maximum likelihood estimation across stress cells
and fit and test acceleration models. 

Sometimes it
is possible to
fit a model
using
degradation
data

Another promising method of fitting acceleration models is sometimes
possible when studying failure mechanisms characterized by a
stress-induced gradual degradation process that causes the eventual
failure. This approach fits models based on degradation data and has the
advantage of not actually needing failures. This overcomes censoring
limitations by providing measurement data at consecutive time intervals
for every unit in every stress cell.

8.4.2. How do you fit an acceleration model?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.2. How do you fit an acceleration model?

8.4.2.1.Graphical estimation

This section will discuss the following: 

How to fit an Arrhenius model with graphical estimation1.  

Graphical estimation: an Arrhenius model example2.  

Fitting more complicated models3.  

Estimate
acceleration
model
parameters
by
estimating
cell T50's

(or 's)
and then
using
regression
to fit the
model
across the
cells

How to fit an Arrhenius Model with Graphical Estimation

Graphical methods work best (and are easiest to describe) for a simple one-stress model
like the widely used Arrhenius model

with T denoting temperature measured in degrees Kelvin (273.16 + degrees Celsius) and
k is Boltzmann's constant (8.617 x 10-5 in eV/°K). 

When applying an acceleration model to a distribution of failure times, we interpret the
deterministic model equation to apply at any distribution percentile we want. This is
equivalent to setting the life distribution scale parameter equal to the model equation
(T50 for the lognormal,  for the Weibull and the MTBF or 1/  for the exponential).

For the lognormal, for example, we have

So, if we run several stress cells and compute T50's for each cell, a plot of the natural log
of these T50's versus the corresponding 1/kT values should be roughly linear with a slope

8.4.2.1. Graphical estimation
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of H and an intercept of ln A. In practice, a computer fit of a line through these points
is typically used to obtain the Arrhenius model estimates. There are even commercial
Arrhenius graph papers that have a temperature scale in 1/kT units and a T50 scale in log
units, but it is easy enough to make the transformations and then use linear or log-linear
papers. Remember that T is in Kelvin in the above equations. For temperature in Celsius,
use the following for 1/kT: 11605/(TCELSIUS + 273.16) 

An example will illustrate the procedure. 

Graphical Estimation: An Arrhenius Model Example:

Arrhenius
model
example

Component life tests were run at 3 temperatures: 85°C, 105°C and 125°C. The lowest
temperature cell was populated with 100 components; the 105° cell had 50 components
and the highest stress cell had 25 components. All tests were run until either all the units
in the cell had failed or 1000 hours was reached. Acceleration was assumed to follow an
Arrhenius model and the life distribution model for the failure mode was believed to be
lognormal. The normal operating temperature for the components is 25°C and it is
desired to project the use CDF at 100,000 hours. 

Test results: 

Cell 1 (85°C): 5 failures at 401, 428, 695, 725 and 738 hours. 95 units were censored at
1000 hours running time. 

Cell 2 (105°C): 35 failures at 171, 187, 189, 266, 275, 285, 301, 302, 305, 316, 317, 324,
349, 350, 386, 405, 480, 493, 530, 534, 536, 567, 589, 598, 599, 614, 620, 650, 668,
685, 718, 795, 854, 917, and 926 hours. 15 units were censored at 1000 hours running
time. 

Cell 3 (125°C): 24 failures at 24, 42, 92, 93, 141, 142, 143, 159, 181, 188, 194, 199, 207,
213, 243, 256, 259, 290, 294, 305, 392, 454, 502 and 696. 1 unit was censored at 1000
hours running time. 

Failure analysis confirmed that all failures were due to the same failure mechanism (if
any failures due to another mechanism had occurred, they would have been considered
censored run times in the Arrhenius analysis). 

Steps to Fitting the Distribution Model and the Arrhenius Model:
Do graphical plots for each cell and estimate T50's and sigma's as previously
discussed.

●   

Put all the plots on the same sheet of graph paper and check whether the lines are
roughly parallel (a necessary consequence of true acceleration).

●   

If satisfied from the plots that both the lognormal model and the constant sigma
from cell to cell are consistent with the data, plot the cell ln T50's versus the
11605/(TCELSIUS + 273.16) cell values, check for linearity and fit a straight line
through the points. Since the points have different degrees of precision, because
different numbers of failures went into their calculation, it is recommended that
the number of failures in each cell be used as weights in a regression program,
when fitting a line through the points.

●   

8.4.2.1. Graphical estimation
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Use the slope of the line as the H estimate and calculate the Arrhenius A
constant from the intercept using A = eintercept .

●   

Estimate the common sigma across all the cells by the weighted average of the
individual cell sigma estimates. Use the number of failures in a cell divided by the
total number of failures in all cells as that cells weight. This will allow cells with
more failures to play a bigger role in the estimation process. 

●   

Dataplot
solution for
Arrhenius
model
example 

Dataplot Analysis of Multicell Arrhenius Model Data:

After creating text files DAT1.TXT, DAT2.TXT and DAT3.TXT of the failure times for
the 3 stress cells, enter Dataplot and execute the following sequence of commands
(individual cell plots have been skipped): 

READ DAT1.TXT CELL1
READ DAT2.TXT CELL2
READ DAT3.TXT CELL3
LET Y1 = LOG(CELL1)
LET Y2 = LOG(CELL2)
LET Y3 = LOG(CELL3)
LET POS1 = SEQUENCE 1 1 5
LET POS2 = SEQUENCE 1 1 35
LET POS3 = SEQUENCE 1 1 24
LET POS1 = (POS1 -.3)/100.4
LET POS2 = (POS2 -.3)/50.4
LET POS3 = (POS3 -.3)/25.4
LET X1 = NORPPF(POS1)
LET X2 = NORPPF(POS2)
LET X3 = NORPPF(POS3)
TITLE PROBABILITY PLOTS OF THREE TEMPERATURE CELLS 
PLOT Y1 X1 AND
PLOT Y2 X2 AND
PLOT Y3 X3

This will produce the following probability plot of all three stress cells on the same
graph.

8.4.2.1. Graphical estimation
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Note that the lines are somewhat straight (a check on the lognormal model) and the
slopes are approximately parallel (a check on the acceleration assumption). 

The cell ln T50 and sigma estimates are obtained from the FIT function as follows: 

FIT Y1 X1
FIT Y2 X2
FIT Y3 X3

Each FIT will yield a cell Ao, the ln T50 estimate, and A1, the cell sigma estimate. These
are summarized in the table below. 

Summary of Least Squares Estimation of Cell Lognormal Parameters

Cell Number ln T50 Sigma

1   (T = 85) 8.168 .908
2  (T = 105) 6.415 .663
3  (T = 125) 5.319 .805

The three cells have 11605/(T + 273.16) values of 32.40, 30.69 and 29.15 respectively,
in cell number order. The Dataplot commands to generate the Arrhenius plot are: 

LET YARRH = DATA 8.168 6.415 5.319
LET XARRH = DATA 32.4 30.69 29.15
TITLE = ARRHENIUS PLOT OF CELL T50'S

8.4.2.1. Graphical estimation
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With only three cells, it is unlikely a straight line through the points will present obvious
visual lack of fit. However, in this case, the points appear to line up very well. 

Finally, the model coefficients are computed from 

LET SS = DATA 5 35 24
WEIGHT = SS
FIT YARRH XARRH

This will yield a ln A estimate of -18.312 (A = e-18.312 = .1115x10-7) and a H estimate

of .808. With this value of H, the acceleration between the lowest stress cell of 85°C
and the highest of 125°C is 

which is almost 14× acceleration. Acceleration from 125 to the use condition of 25°C is
3708× . The use T50 is e-18.312 x e.808x11605x1/298.16= e13.137 = 507383. 

A single sigma estimate for all stress conditions can be calculated as a weighted average
of the 3 sigma estimates obtained from the experimental cells. The weighted average is
(5/64) × .908 + (35/64) × .663 + (24/64) × .805 = .74. 

Fitting More Complicated models

8.4.2.1. Graphical estimation
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Models
involving
several
stresses can
be fit using
multiple
regression

Two stress models, such as the temperature /voltage model given by 

need at least 4 or five carefully chosen stress cells to estimate all the parameters. The
Backwards L design previously described is an example of a design for this model. The
bottom row of the "backward L" could be used for a plot testing the Arrhenius
temperature dependence, similar to the above Arrhenius example. The right hand column
could be plotted using y = ln T50 and x = ln V, to check the voltage term in the model.
The overall model estimates should be obtained from fitting the multiple regression
model 

The Dataplot command for fitting this model, after setting up the Y, X1 = X1, X2 = X2 
data vectors, is simply 

FIT Y X1 X2

and the output gives the estimates for b0, b1 and b2. 

Three stress models, and even Eyring models with interaction terms, can be fit by a
direct extension of these methods. Graphical plots to test the model, however, are less
likely to be meaningful as the model becomes more complex.

8.4.2.1. Graphical estimation
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8.4.2. How do you fit an acceleration model?

8.4.2.2.Maximum likelihood

The
maximum
likelihood
method can
be used to
estimate
distribution
and
acceleration
model
parameters
at the same
time

The Likelihood equation for a multi-cell acceleration model starts by computing the Likelihood
functions for each cell, as was described earlier. Each cell will have unknown life distribution
parameters that, in general, are different. For example, if a lognormal model is used, each cell
might have its own T50 and .

Under an acceleration assumption, however, all the cells contain samples from populations that
have the same value of  (the slope does not change for different stress cells). Also, the T50's are
related to one another by the acceleration model; they all can be written using the acceleration
model equation with the proper cell stresses put in. 

To form the Likelihood equation under the acceleration model assumption, simply rewrite each
cell Likelihood by replacing each cell T50 by its acceleration model equation equivalent and

replacing each cell sigma by the same one overall . Then, multiply all these modified cell
Likelihoods together to obtain the overall Likelihood equation. 

Once you have the overall Likelihood equation, the maximum likelihood estimates of sigma and
the acceleration model parameters are the values that maximize this Likelihood. In most cases,
these values are obtained by setting partial derivatives of the log Likelihood to zero and solving
the resulting (non-linear) set of equations. 

The method
is
complicated
and requires
specialized
software

As you can see, the procedure is complicated and computationally intensive, and only practical if
appropriate software is available. It does have many desirable features such as:

the method can, in theory at least, be used for any distribution model and acceleration
model and type of censored data

●   

estimates have "optimal" statistical properties as sample sizes (i.e., numbers of failures)
become large

●   

approximate confidence bounds can be calculated●   

statistical tests of key assumptions can be made using the likelihood ratio test. Some
common tests are:

the life distribution model versus another simpler model with fewer parameters (i.e.,
a 3-parameter Weibull versus a 2-parameter Weibull, or a 2-parameter Weibull vs an
exponential)

❍   

the constant slope from cell to cell requirement of typical acceleration models❍   

the fit of a particular acceleration model❍   

●   

In general, the recommendations made when comparing methods of estimating life distribution
model parameters also apply here. Software incorporating acceleration model analysis capability,
while rare just a few years ago, is now readily available and many companies and universities
have developed their own proprietary versions. 

8.4.2.2. Maximum likelihood
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Example Comparing Graphical Estimates and MLE 's

Arrhenius
example
comparing
graphical
and MLE
method
results

The data from the 3-stress-cell Arrhenius example given in  the preceding section were analyzed
using a proprietary MLE program that could fit individual cells and also do an overall Arrhenius
fit. The tables below compare results. 
 
 

Graphical Estimates MLE's
ln T50 Sigma ln T50 Sigma

Cell 1 8.17 .91 8.89 1.21
Cell 2 6.42 .66 6.47 .71
Cell 3 5.32 .81 5.33 .81

Acceleration Model Overall Estimates

H Sigma ln A

Graphical .808 .74 -18.312
MLE .863 .77 -19.91

Note that when there were a lot of failures and little censoring, the two methods were in fairly
close agreement. Both methods were also in close agreement on the Arrhenius model results.
However, even small differences can be important when projecting reliability numbers at use
conditions. In this example, the CDF at 25°C and 100,000 hours projects to .014 using the
graphical estimates and only .003 using the MLE estimates.

MLE method
tests models
and gives
confidence
intervals

The Maximum Likelihood program also tested whether parallel lines (a single sigma) were
reasonable and whether the Arrhenius model was acceptable. The three cells of data passed both
of these Likelihood Ratio tests easily. In addition, the MLE program output included confidence
intervals for all estimated parameters. 

SAS JMP™ software (previously used to find single cell Weibull MLE's) can also be used for
fitting acceleration models. This is shown next. 

Using SAS JMP™Software To Fit Reliability Models

Detailed
explanation
of how to
use JMP
software to
fit an
Arrhenius
model

If you have JMP on your computer, set up to run as a browser application, click here to load a
lognormal template JMP spreadsheet named arrex.jmp. This template has the Arrhenius example
data already entered. The template extends JMP's analysis capabilities beyond the standard JMP
routines by making use of JMP's powerful "Nonlinear Fit" option (links to blank templates for
both Weibull and lognormal data are provided at the end of this page). 

First, a standard JMP reliability model analysis for these data will be shown. By working with
screen windows showing both JMP and the Handbook, you can try out the steps in this analysis as
you read them. Most of the screens below are based on JMP 3.2 platforms, but comparable
analyses can be run with JMP 4.

The first part of the spreadsheet should appear as illustrated below.

8.4.2.2. Maximum likelihood
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Steps For Fitting The Arrhenius Model Using JMP's "Survival" Options

1. The "Start Time" column has all the fail and censor times and "Censor" and "Freq" were
entered as shown previously. In addition, the temperatures in degrees C corresponding to  each
row were entered in "Temp in C". That is all that has to be entered on the template; all other
columns are calculated as needed. In particular, the "1/kT" column contains the standard
Arrhenius 1/kT values for the different temperature cells.

2. To obtain a plot of all three cells, along with individual cell lognormal parameter estimates,
choose "Kaplan - Meier" (or "Product Limit") from the "Analysis" menu and fill in the screen as
shown below. 

Column names are transferred to the slots on the right by highlighting them and clicking on the
tab for the slot. Note that the "Temp in C" column is transferred to the "Grouping" slot in order to
analyze and plot each of the three temperature cells separately.

8.4.2.2. Maximum likelihood
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Clicking "OK" brings up the analysis screen below. All plots and estimates are based on
individual cell data, without the Arrhenius model assumption. Note: To obtain the lognormal
plots, parameter estimates and confidence bounds, it was necessary to click on various "tabs" or
"check" marks - this may depend on the software release level.

8.4.2.2. Maximum likelihood
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This screen does not give -LogLikelihood values for the cells. These are obtained from the
"Parametric Model" option in the "Survival" menu (after clicking "Analyze").

3. First we will use the "Parametric Model" option to obtain individual cell estimates. On the JMP
data spreadsheet (arrex.jmp), select all rows except those corresponding to cell 1 (the 85 degree
cell) and choose "Exclude" from the "Row" button options (or do "ctrl+E"). Then click "Analyze"
followed by "Survival" and "Parametric Model". Enter the appropriate columns, as shown below.
Make sure you use "Get Model" to select "lognormal" and  click "Run Model".

8.4.2.2. Maximum likelihood
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This will generate a model fit screen for cell 1. Repeat for cells 2 and 3. The three resulting model
fit screens are shown below.

8.4.2.2. Maximum likelihood
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Note that the model estimates and bounds are the same as obtained in step 2, but these screens

also give -LogLikelihood values. Unfortunately, as previously noted, these values are off by the
sum of the {ln(times of failure)} for each cell. These sums for the three cells are 31.7871,
213.3097 and 371.2155, respectively. So the correct cell -LogLikelihood values for comparing
with other MLE programs are 53.3546, 265.2323 and 156.5250, respectively. Adding them

together yields a total -LogLikelihood of 475.1119 for all the data fit with separate lognormal
parameters for each cell (no Arrhenius model assumption). 

4. To fit the Arrhenius model across the three cells go back to the survival model screen, this time
with all the data rows included and the "1/kT" column selected and put into the "Effects in
Model" box via the "Add" button. This adds the Arrhenius temperature effect to the MLE analysis
of all the cell data. The screen looks like:

Clicking "Run Model" produces

8.4.2.2. Maximum likelihood
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The MLE estimates agree with those shown in the tables earlier on this page. The -LogLikelihood
for the model is given under "Full" in the output screen (and should be adjusted by adding the
sum of all the ln failure times from all three cells if comparisons to other programs might be

made). This yields a model -LogLikelihood of  105.4934 + 371.2155 = 476.7089. 

5. The likelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single

sigma acceleration assumption) is - 2Log , with  denoting the difference between the
LogLikelihoods with and without the Arrhenius model assumption. Using the results from steps 3

and 4, we have - 2Log  = 2 × (476.709 - 475.112) = 3.194. The degrees of freedom (dof) for the
Chi-Square test statistic is 6 - 3 = 3, since six parameters were reduced to three under the
acceleration model assumption. The chance of obtaining a value 3.194 or higher is 36.3% for a
Chi Square distribution with 3 dof, which indicates an acceptable model (no significant lack of
fit).

This completes a JMP 3.2 Arrhenius model analysis of the three cells of data. Since the Survival
Modeling screen allows any "effects" to be included in the model, if different cells of data had
different voltages, the "ln V" column could be added as an effect to fit the Inverse Power Law
voltage model. In fact, several effects can be included at once if more than one stress varies
across cells. Cross product stress terms could also be included by adding these columns to the
spreadsheet and adding them in the model as additional "effects". 

Arrhenius
example
using
special JMP
template and
"Nonlinear
Fit"

Steps For Fitting The Arrhenius Model Using the "Nonlinear Fit" Option and Special JMP
Templates

There is another powerful and flexible tool included within JMP that can use MLE methods to fit
reliability models. While this approach requires some simple programming of JMP calculator
equations, it offers the advantage of extending JMP's analysis capabilities to readout data (or
truncated data, or any combination of different types of data). Templates (available below) have
been set up to cover lognormal and Weibull data. The spreadsheet used above (arrex.jmp) is just a
partial version of the lognormal template, with the Arrhenius data entered. The full templates can
also be used to project CDF's at user stress conditions, with confidence bounds.

The following steps work with arrex.jmp because the "loss" columns have been set up to calculate
-LogLikelihoods for each row. 

8.4.2.2. Maximum likelihood
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1. Load the arrex.jmp spreadsheet and Click "Analyze" on the Tool Bar and choose "Nonlinear
Fit".

2. Select the Loss (w/Temp) column and click "Loss" to put "Loss (w/Temp)" in the box. This
column on the spreadsheet automatically calculates the - LogLikelihood values at each data point
for the Arrhenius/lognormal model. Click "OK" to run the Nonlinear Analysis.

3. You will next see a "Nonlinear Fit" screen. Select "Loss is -LogLikelihood" and click the
"Reset" and "Go" buttons to make sure you have a new analysis. The parameter values for the
constant ln A (labeled "Con"), ∆H and sig will appear and the value of - LogLikelihood is given
under the heading "SSE". These numbers are -19.91, 0.863, 0.77 and 476.709, respectively. You
can now click on "Confid Limits" to obtain upper and lower confidence limits for these
parameters. The stated value of "Alpha = .05" means that the interval between the limits is a  95%
confidence interval. At this point your "Nonlinear Fit" screen appears as follows

8.4.2.2. Maximum likelihood
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:

4. Next you can run each cell separately by excluding all data rows corresponding to other cells
and repeating steps 1 through 3. For this analysis, select the "Loss (w/o Stress)" column to put in
"Loss" in step 2, since a single cell fit does not use temperature . The numbers should match the

table shown earlier on this page. The three cell -LogLikelihood values are 53.355, 265.232 and

156.525. These add to 475.112, which is the minimum -loglikelihood possible, since it uses 2
independent parameters to fit each cell separately (for a total of six parameters, overall).

The likelihood ratio test statistic for the Arrhenius model fit (which also incorporates the single
sigma acceleration assumption) is - 2Log λ = 2 x (476.709 - 475.112) = 3.194. Degrees of
freedom for the Chi-Square test statistic is 6 - 3 = 3, since six parameters were reduced to three
under the acceleration model assumption. The chance of obtaining a value of 3.194 or higher is
36.3% for a Chi-Square distribution with 3 dof, which indicates an acceptable model (no
significant lack of fit).

For further examples of JMP reliability analysis there is an excellent collection of JMP statistical
tutorials put together by Professor Ramon Leon and one of his students, Barry Eggleston,
available on the Web at
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://web.utk.edu/~leon/jmp/.

8.4.2.2. Maximum likelihood
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Data entry
on JMP
templates
for general
reliability
data

How To Use JMP Templates For Lognormal or Weibull Data (Including Acceleration
Model Analysis)

With JMP installed to run as a browser application, you can click on weibtmp.jmp or
lognmtmp.jmp and load (and save for later use) blank templates similar to the one shown above,
for either Weibull or lognormal data analysis. Here's how to enter any kind of data on either of
the templates.

Typical Data Entry

1. Any kind of censored or truncated or readout data can be entered. The rules are as follows for
the common case of (right) censored reliability data:
 

i) Enter exact failure times in the "Start Time" column, with "0" in the "Cens"
column and the number of failures at that exact time in the "Freq" column.

ii) Enter temperature in degrees Celsius for the row entry in "Temp in C", whenever
data from several different operating temperatures are present and an Arrhenius
model fit is desired.

iii) Enter voltages in "Volt" for each row entry whenever data from several different
voltages are present and an Inverse Power Law model fit is desired. If both
temperatures and voltages are entered for all data rows, a combined two-stress model
can be fit.

iv) Put censor times (when unfailed units are removed from test, or no longer
observed)  in the "Start Time" column, and enter "1" in the "Cens" column. Put the
number of censored units in the "Freq" column.

v) If readout (also known as interval) data are present, put the interval start time and
stop time in the corresponding columns and "2" in the "Cens" column. Put the
number of failures during the interval in the "Freq" column. If the number of failures
is zero, it doesn't matter if you include the interval, or not. 

Using The Templates For Model Fitting and CDF Projections With Bounds

Pick the appropriate template; weibtmp.jmp for a Weibull fit, or lognmtmp.jmp for a lognormal
fit. Follow this link for documentation on the use of these templates. Refer to the Arrhenius
model example above for an illustration of how to use the JMP non-linear fit platform with these
templates.

A few tricks are needed to handle the rare cases of truncated data or left-censored data. These are
described in the template documentation and also repeated below (since they work for the JMP
survival platform and can be used with other similar kinds of reliability analysis software .

8.4.2.2. Maximum likelihood
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How to
handle
truncated or
left-censored
data using
JMP
templates

JMP Template Data Entry For Truncated or Left-Censored Weibull or Lognormal Data

Left censored data means all exact times of failure below a lower cut-off time T0 are unknown,
but the number of these failures is known. Merely enter an interval with start time 0 and stop time
T0 on the appropriate template and put "2" in the "Cens" column and the number in the "Freq"
column.

Left truncated data means all data points below a lower cut off point T0 are unknown, and even
the number of such points is unknown. This situation occurs commonly for measurement data,
when the measuring instrument has a lower threshold detection limit at T0. Assume there are n
data points (all above T0) actually observed. Enter the n points as you normally would on the
appropriate template ("Cens" gets 0 and "Freq" gets 1) and add a start time of T0 with a "Cens"
value of 1 and a "Freq" value of -n (yes, minus n!). 

Right truncated data means all data points above an upper cut-off point T1 are unknown, and
even the number of such points is unknown. Assume there are n data points (all below T1)
actually observed. Enter the n points as you normally would on the appropriate template ("Cens"
gets 0 and "Freq" gets 1) and add a start time of  0 and a stop time of T1 with a "Cens" value of 2
and a "Freq" value of -n (yes, minus n!)

8.4.2.2. Maximum likelihood
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.2. How do you fit an acceleration model?

8.4.2.3.Fitting models using degradation data instead
of failures

If you can fit
models using
degradation
data, you
don't need
actual test
failures

When failure can be related directly to a change over time in a measurable product
parameter, it opens up the possibility of measuring degradation over time and using that data
to extrapolate when failure will occur. That allows us to fit acceleration models and life
distribution models without actually waiting for failures to occur. 

This overview of degradation modeling assumes you have a chosen life distribution model
and an acceleration model and offers an alternative to the accelerated testing methodology
based on failure data, previously described. The following topics are covered: 

Common assumptions●   

Advantages●   

Drawbacks●   

A simple method●   

A more accurate approach for a special case●   

Example●   

More details can be found in Nelson (1990, pages 521-544) or Tobias and Trindade (1995,
pages 197-203). 

Common Assumptions When Modeling Degradation Data

You need a
measurable
parameter
that drifts
(degrades)
linearly to a
critical
failure value

Two common assumptions typically made when degradation data are modeled are the
following:

A parameter D, that can be measured over time, drifts monotonically (upwards, or
downwards) towards a specified critical value DF. When it reaches DF, failure occurs.

1.  

The drift, measured in terms of D, is linear over time with a slope (or rate of
degradation) R, that depends on the relevant stress the unit is operating under and also
the (random) characteristics of the unit being measured. Note: It may be necessary to
define D as a transformation of some standard parameter in order to obtain linearity -
logarithms or powers are sometimes needed.

2.  

The figure below illustrates these assumptions by showing degradation plots of 5 units on
test. Degradation readings for each unit are taken at the same four time points and straight
lines fit through these readings on a unit-by-unit basis. These lines are then extended up to a
critical (failure) degradation value. The projected times of failure for these units are then read
off the plot. The are: t1, t2, ...,t5. 
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Plot of
linear
degradation
trends for 5
units read
out at four
time points

In many practical situations, D starts at 0 at time zero, and all the linear theoretical
degradation lines start at the origin. This is the case when D is a "% change" parameter, or
failure is defined as a change of a specified magnitude in a parameter, regardless of its
starting value. Lines all starting at the origin simplify the analysis since we don't have to
characterize the population starting value for D, and the "distance" any unit "travels" to reach
failure is always the constant DF. For these situations, the degradation lines would look as
follows: 

Often, the
degradation
lines go
through the
origin - as
when %
change is the
measurable
parameter
increasing to
a failure
level
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It is also common to assume the effect of measurement error, when reading values of D, has
relatively little impact on the accuracy of model estimates. 

Advantages of Modeling Based on Degradation Data

Modeling
based on
complete
samples of
measurement
data, even
with low
stress cells,
offers many
advantages

Every degradation readout for every test unit contributes a data point. This leads to
large amounts of useful data, even if there are very few failures.

1.  

You don't have to run tests long enough to obtain significant numbers of failures.2.  

You can run low stress cells that are much closer to use conditions and obtain
meaningful degradation data. The same cells would be a waste of time to run if failures
were needed for modeling. Since these cells are more typical of use conditions, it
makes sense to have them influence model parameters.

3.  

Simple plots of degradation vs time can be used to visually test the linear degradation
assumption.

4.  

Drawbacks to Modeling Based on Degradation Data

8.4.2.3. Fitting models using degradation data instead of failures

http://www.itl.nist.gov/div898/handbook/apr/section4/apr423.htm (3 of 7) [5/1/2006 10:42:30 AM]



Degradation
may not
proceed in a
smooth,
linear
fashion
towards
what the
customer
calls
"failure"

For many failure mechanisms, it is difficult or impossible to find a measurable
parameter that degrades to a critical value in such a way that reaching that critical
value is equivalent to what the customer calls a failure.

1.  

Degradation trends may vary erratically from unit to unit, with no apparent way to
transform them into linear trends.

2.  

Sometimes degradation trends are reversible and a few units appear to "heal
themselves" or get better. This kind of behavior does not follow typical assumptions
and is difficult to model.

3.  

Measurement error may be significant and overwhelm small degradation trends,
especially at low stresses.

4.  

Even when degradation trends behave according to assumptions and the chosen
models fit well, the final results may not be consistent with an analysis based on actual
failure data. This probably means that the failure mechanism depends on more than a
simple continuous degradation process.

5.  

Because of the last listed drawback, it is a good idea to have at least one high-stress cell
where enough real failures occur to do a standard life distribution model analysis. The
parameter estimates obtained can be compared to the predictions from the degradation data
analysis, as a "reality" check. 

A Simple Method For Modeling Degradation Data

A simple
approach is
to extend
each unit's
degradation
line until a
projected
"failure
time" is
obtained

As shown in the figures above, fit a line through each unit's degradation readings. This
can be done by hand, but using a least squares regression program is better (like
Dataplot's "LINEAR FIT Y X" or EXCEL's line fitting routines).

1.  

Take the equation of the fitted line, substitute DF for Y and solve for X. This value of
X is the "projected time of fail" for that unit.

2.  

Repeat for every unit in a stress cell until a complete sample of (projected) times of
failure is obtained for the cell.

3.  

Use the failure times to compute life distribution parameter estimates for a cell. Under
the fairly typical assumption of a lognormal model, this is very simple. Take natural
logarithms of all failure times and treat the resulting data as a sample from a normal
distribution. Compute the sample mean and the sample standard deviation. These are
estimates of ln T50 and , respectively, for the cell.

4.  

Assuming there are k cells with varying stress, fit an appropriate acceleration model
using the cell ln T50's, as described in the graphical estimation section. A single sigma

estimate is obtained by taking the square root of the average of the cell  estimates
(assuming the same number of units each cell). If the cells have nj units on test, with
the nj's not all equal, use the pooled sum of squares estimate across all k cells
calculated by

5.  

8.4.2.3. Fitting models using degradation data instead of failures
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A More Accurate Regression  Approach For the Case When D = 0 at time 0 and the
"Distance To Fail" DF is the Same for All Units

Models can
be fit using
all the
degradation
readings and
linear
regression

Let the degradation measurement for the i-th unit at the j-th readout time in the k-th stress
cell be given by Dijk, and let the corresponding readout time for this readout be denoted by tjk
. That readout gives a degradation rate (or slope) estimate of Dijk / tjk. This follows from the
linear assumption or:

(Rate of degradation) × (Time on test) = (Amount of degradation)

Based on that readout alone, an estimate of the natural logarithm of the time to fail for that
unit is

yijk = ln DF - (ln Dijk - ln tjk).

This follows from the basic formula connecting linear degradation with failure time 

(rate of degradation) × (time of failure) = DF

by solving for (time of failure) and taking natural logarithms. 

For an Arrhenius model analysis, with 

with the xk values equal to 1/KT. Here T is the temperature of the k-th cell, measured in

Kelvin (273.16 + degrees Celsius) and K is Boltzmann's constant (8.617 × 10-5 in eV/ unit

Kelvin). Use a linear regression program to estimate a = ln A and b = h. If we further
assume tf  has a lognormal distribution, the mean square residual error from the regression

fit is an estimate of  (with the lognormal sigma). 

One way to think about this model is as follows: each unit has a random rate R of
degradation. Since tf = DF/R, it follows from a characterization property of the normal
distribution that if tf  is lognormal, then R must also have a lognormal distribution (assuming
DF and R are independent). After we take logarithms, ln R has a normal distribution with a
mean determined by the acceleration model parameters. The randomness in R comes from
the variability in physical characteristics from unit to unit, due to material and processing
differences. 

Note: The estimate of sigma based on this simple graphical approach might tend to be too
large because it includes an adder due to the measurement error that occurs when making the
degradation readouts. This is generally assumed to have only a small impact. 

Example: Arrhenius Degradation Analysis

8.4.2.3. Fitting models using degradation data instead of failures
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An example
using the
regression
approach to
fit an
Arrhenius
model

A component has a critical parameter that studies show degrades linearly over time at a rate
that varies with operating temperature. A component failure based on this parameter occurs
when the parameter value changes by 30% or more. Fifteen components were tested under 3
different temperature conditions (5 at 65o, 5 at 85o and the last 5 at 105o). Degradation
percent values were read out at 200, 500 and 1000 hours. The readings are given by unit in
the following three temperature cell tables. 

65 Degrees C

200 hr 500 hr 1000 hr
Unit 1      .87 1.48 2.81
Unit 2      .33  .96 2.13
Unit 3      .94 2.91 5.67
Unit 4      .72 1.98 4.28
Unit 5      .66  .99 2.14

 85 Degrees C

200 hr 500 hr 1000 hr
Unit 1      1.41 2.47 5.71
Unit 2      3.61  8.99 17.69
Unit 3      2.13 5.72 11.54
Unit 4      4.36 9.82 19.55
Unit 5      6.91 17.37 34.84

 105 Degrees C

200 hr 500 hr 1000 hr
Unit 1      24.58 62.02 124.10
Unit 2       9.73  24.07 48.06
Unit 3       4.74 11.53 23.72
Unit 4      23.61 58.21 117.20
Unit 5      10.90  27.85 54.97

Note that 1 unit failed in the 85 degree cell and 4 units failed in the 105 degree cell. Because
there were so few failures, it would be impossible to fit a life distribution model in any cell
but the 105 degree cell, and therefore no acceleration model can be fit using failure data. We
will fit an Arrhenius/Lognormal model, using the degradation data. 

Dataplot Solution:

8.4.2.3. Fitting models using degradation data instead of failures
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Dataplot
easily fits the
model to the
degradation
data

Other
regression
programs
would work
equally well

From the above tables, first create a data row of 45 degradation values starting with the first
row in the first table and proceeding to the last row in the last table. Put these in a text file
called DEGDAT. DEGDAT has one row of 45 numbers looking like the following: .87, .33,
.94, .72, .66, 1.48, .96, 2.91, 1.98, .99, . . . , 124.10, 48.06, 23.72, 117.20, 54.97. 

Next, create a text file TEMPDAT, containing the corresponding 45 temperatures. TEMP has
15 repetitions of 65, followed by 15 repetitions of 85 and then 15 repetitions of 105. 

Finally, create a text file TIMEDAT, containing the corresponding readout times. These are
200, 200, 200, 200, 200, 500, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, repeated 3
times. 

Assuming the data files just created are placed in the Dataplot directory, the following
commands will complete the analysis: 

READ DEGDAT. DEG
READ TEMPDAT. TEMP
READ TIMEDAT. TIME
LET YIJK = LOG(30) - (LOG(DEG) - LOG(TIME))
LET XIJK = 100000/(8.617*(TEMP + 273.16))
LINEAR FIT YIJK XIJK

The output is (with unnecessary items edited out) 

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N = 45
DEGREE = 1

PARAMETER ESTIMATES (APPROX ST. DEV) t-VALUE
1 A0 -18.9434 (1.833) -10
2 A1 .818774 (.5641e-01) 15

RESIDUAL STANDARD DEVIATION = .5610

The Arrhenius model parameter estimates are: ln A = -18.94; H = .82. An estimate of the
lognormal sigma is  = .56.
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.3.How do you project reliability at use
conditions?

When
projecting
from high
stress to use
conditions,
having a
correct
acceleration
model and
life
distribution
model is
critical

General Considerations

Reliability projections based on failure data from high stress tests are
based on assuming we know the correct acceleration model for the
failure mechanism under investigation and we are also using the correct
life distribution model. This is because we are extrapolating
"backwards" - trying to describe failure behavior in the early tail of the
life distribution, where we have little or no actual data. 

For example, with an acceleration factor of 5000 (and some are much
larger than this), the first 100,000 hours of use life is "over" by 20 hours
into the test. Most, or all, of the test failures typically come later in time
and are used to fit a life distribution model with only the first 20 hours
or less being of practical use.  Many distributions may be flexible
enough to adequately fit the data at the percentiles where the points are,
and yet differ from the data by orders of magnitude in the very early
percentiles (sometimes referred to as the early "tail" of the distribution). 

However, it is frequently necessary to test at high stress (to obtain any
failures at all!) and project backwards to use. When doing this bear in
mind two important points:

8.4.3. How do you project reliability at use conditions?
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Project for
each failure
mechanism
separately

Distribution models, and especially acceleration models, should
be applied only to a single failure mechanism at a time. Separate
out failure mechanisms when doing the data analysis and use the
competing risk model to build up to a total component failure rate

●   

Try to find theoretical justification for the chosen models, or at
least a successful history of their use for the same or very similar
mechanisms. (Choosing models solely based on empirical fit is
like extrapolating from quicksand to a mirage.) 

●   

How to Project from High Stress to Use Stress

Two types of use-condition reliability projections are common:

Projection to use conditions after completing a multiple stress cell
experiment and successfully fitting both a life distribution model
and an acceleration model

1.  

Projection to use conditions after a single cell at high stress is run
as a line reliability monitor.

2.  

Arrhenius
model
projection
example
with
Dataplot
commands

The Arrhenius example from the graphical estimation and the MLE
estimation sections ended by comparing use projections of the CDF at
100,000 hours. This is a projection of the first type. We know from the
Arrhenius model assumption that the T50 at 25°C is just 

Using the graphical model estimates for ln A and we have

T50 at use = e-18.312 × e.808 × 11605/298.16 = e13.137 = 507383

and combining this T50 with the estimate of the common sigma of .74
allows us to easily estimate the CDF or failure rate after any number of
hours of operation at use conditions. In particular, the Dataplot
command 

LET Y = LGNCDF((T/T50),sigma)

evaluates a lognormal CDF at time T, and 

LET Y = LGNCDF((100000/507383),.74)

returns the answer .014 given in the MLE estimation section as the
graphical projection of the CDF at 100,000 hours at a use temperature of
25°C. 

If the life distribution model had been Weibull, the same type of
analysis would be performed by letting the characteristic life parameter 

 vary with stress according to the acceleration model, while the shape
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parameter  is constant for all stress conditions. 

The second type of use projection was used in the section on lognormal
and Weibull tests, in which we judged new lots of product by looking at
the proportion of failures in a sample tested at high stress. The
assumptions we made were: 

we knew the acceleration factor between use and high stress●   

the shape parameter (sigma for the lognormal, gamma for the
Weibull) is also known and does not change significantly from lot
to lot.

●   

With these assumptions, we can take any proportion of failures we see
from a high stress test and project a use CDF or failure rate. For a
T-hour high stress test and an acceleration factor of A from high stress to
use stress, an observed proportion p is converted to a use CDF at
100,000 hours for a lognormal model as follows: 

LET T50STRESS = T*LGNPPF(p, )
LET CDF = LGNCDF((100000/(A*T50STRESS)), )

If the model is Weibull, the Dataplot commands are 

LET ASTRESS = T*WEIPPF(p, )

LET CDF = WEICDF((100000/(A*ASTRESS)), )

8.4.3. How do you project reliability at use conditions?
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.4.How do you compare reliability
between two or more populations?

Several
methods for
comparing
reliability
between
populations
are
described

Comparing reliability among populations based on samples of failure
data usually means asking whether the samples came from populations
with the same reliability function (or CDF). Three techniques already
described can be used to answer this question for censored reliability
data. These are: 

Comparing sample proportion failures ●   

Likelihood ratio test comparisons●   

Lifetime regression comparisons●   

Comparing Sample Proportion Failures

Assume each sample is a random sample from possibly a different lot,
vendor or production plant. All the samples are tested under the same
conditions. Each has an observed proportion of failures on test. Call
these sample proportions of failures p1, p2, p3, ...pn. Could these all have
come from equivalent populations? 

This is a question covered in Chapter 7 for two populations, and for
more than two populations, and the techniques described there apply
equally well here. 

Likelihood Ratio Test Comparisons

The Likelihood Ratio test was described earlier. In this application, the

Likelihood ratio  has as a denominator the product of all the
Likelihoods of all the samples assuming each population has its own
unique set of parameters. The numerator is the product of the
Likelihoods assuming the parameters are exactly the same for each

population. The test looks at whether -2ln  is unusually large, in which
case it is unlikely the populations have the same parameters (or
reliability functions). 

This procedure is very effective if, and only if, it is built into the
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analysis software package being used and this software covers the
models and situations of interest to the analyst. 

Lifetime Regression Comparisons

Lifetime regression is similar to maximum likelihood and likelihood
ratio test methods. Each sample is assumed to have come from a
population with the same shape parameter and a wide range of questions
about the scale parameter (which is often assumed to be a "measure" of
lot-to-lot or vendor-to-vendor quality) can be formulated and tested for
significance. 

For a complicated, but realistic example, assume a company
manufactures memory chips and can use chips with some known defects
("partial goods") in many applications. However, there is a question of
whether the reliability of "partial good" chips is equivalent to "all good"
chips. There exists lots of customer reliability data to answer this
question. However the data are difficult to analyze because they contain
several different vintages with known reliability differences as well as
chips manufactured at many different locations. How can the partial
good vs all good question be resolved? 

A lifetime regression model can be constructed with variables included
that change the scale parameter based on vintage, location, partial
versus all good, and any other relevant variables. Then, a good lifetime
regression program will sort out which, if any, of these factors are
significant and, in particular, whether there is a significant difference
between "partial good" and "all good". 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis

8.4.5.How do you fit system repair rate
models?

Fitting
models
discussed
earlier

This subsection describes how to fit system repair rate models when you
have actual failure data. The data could come from  from observing a
system in normal operation or from running tests such as Reliability
Improvement tests. 

The three models covered are the constant repair rate (HPP/exponential)
model, the power law (Duane) model and the exponential law model. 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.5. How do you fit system repair rate models?

8.4.5.1.Constant repair rate
(HPP/exponential) model

This section
covers
estimating
MTBF's and
calculating
upper and
lower
confidence
bounds

The HPP or exponential model is widely used for two reasons: 

Most systems spend most of their useful lifetimes operating in the
flat constant repair rate portion of the bathtub curve

●   

It is easy to plan tests, estimate the MTBF and calculate
confidence intervals when assuming the exponential model.

●   

This section covers the following: 

Estimating the MTBF (or repair rate/failure rate)1.  

How to use the MTBF confidence interval factors2.  

Tables of MTBF confidence interval factors 3.  

Confidence interval equation and "zero fails" case4.  

Dataplot/EXCEL calculation of confidence intervals5.  

Example6.  

Estimating the MTBF (or repair rate/failure rate)

For the HPP system model, as well as for the non repairable exponential

population model, there is only one unknown parameter  (or

equivalently, the MTBF = 1/ ). The method used for estimation is the
same for the HPP model and for the exponential population model. 
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The best
estimate of
the MTBF is
just "Total
Time"
divided by
"Total
Failures"

The estimate of the MTBF is 

This estimate is the maximum likelihood estimate whether the data are
censored or complete, or from a repairable system or a non-repairable
population. 

Confidence
Interval
Factors
multiply the
estimated
MTBF to
obtain lower
and upper
bounds on
the true
MTBF

How To Use the MTBF Confidence Interval Factors
Estimate the MTBF by the standard estimate (total unit test hours
divided by total failures)

1.  

Pick a confidence level (i.e., pick 100x(1- )). For 95%,  = .05;
for 90%,  = .1; for 80%,  = .2 and for 60%,  = .4

2.  

Read off a lower and an upper factor from the confidence interval
tables for the given confidence level and number of failures r

3.  

Multiply the MTBF estimate by the lower and upper factors to
obtain MTBFlower and MTBFupper

4.  

When r (the number of failures) = 0, multiply the total unit test
hours by the "0 row" lower factor to obtain a 100 × (1- /2)%
one-sided lower bound for the MTBF. There is no upper bound
when r = 0.

5.  

Use (MTBFlower, MTBFupper) as a 100×(1- )% confidence

interval for the MTBF  (r > 0)

6.  

Use MTBFlower as a (one-sided) lower 100×(1- /2)% limit for
the MTBF

7.  

Use MTBFupper as a (one-sided) upper 100×(1- /2)% limit for
the MTBF

8.  

Use (1/MTBFupper, 1/MTBFlower) as a 100×(1- )% confidence

interval for 

9.  

Use 1/MTBFupper as a (one-sided) lower 100×(1- /2)% limit for 10.  

8.4.5.1. Constant repair rate (HPP/exponential) model
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Use 1/MTBFlower as a (one-sided) upper 100×(1- /2)% limit for 11.  

Tables of MTBF Confidence Interval Factors

Confidence
bound factor
tables for
60, 80, 90
and 95%
confidence

Confidence Interval Factors to Multiply MTBF Estimate

60% 80%
Num

Fails r
Lower for

MTBF
Upper for

MTBF
Lower for

MTBF
Upper for

MTBF

0 0.6213 - 0.4343 -
1 0.3340 4.4814 0.2571  9.4912 
2 0.4674 2.4260 0.3758 3.7607
3 0.5440 1.9543 0.4490   2.7222 
4 0.5952 1.7416 0.5004 2.2926
5 0.6324 1.6184 0.5391 2.0554
6 0.6611 1.5370 0.5697 1.9036
7 0.6841 1.4788 0.5947 1.7974
8 0.7030 1.4347 0.6156  1.7182 
9 0.7189 1.4000 0.6335 1.6567

10 0.7326 1.3719 0.6491 1.6074
11 0.7444 1.3485 0.6627 1.5668
12 0.7548 1.3288 0.6749  1.5327 
13 0.7641 1.3118 0.6857 1.5036
14 0.7724 1.2970 0.6955 1.4784
15 0.7799 1.2840 0.7045 1.4564
20 0.8088 1.2367 0.7395  1.3769 
25 0.8288 1.2063 0.7643  1.3267 
30 0.8436 1.1848 0.7830 1.2915
35 0.8552 1.1687 0.7978 1.2652
40 0.8645 1.1560 0.8099 1.2446
45 0.8722 1.1456 0.8200  1.2280 
50 0.8788 1.1371 0.8286 1.2142
75 0.9012 1.1090 0.8585 1.1694

100 0.9145 1.0929 0.8766 1.1439
500 0.9614 1.0401 0.9436  1.0603 

Confidence Interval Factors to Multiply MTBF Estimate

90% 95%
Num
Fails

Lower for
MTBF

Upper for
MTBF

Lower for
MTBF

Upper for
MTBF

0 0.3338 - 0.2711 -
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1 0.2108 19.4958 0.1795 39.4978 
2 0.3177 5.6281 0.2768 8.2573
3 0.3869 3.6689 0.3422 4.8491
4 0.4370 2.9276 0.3906 3.6702
5 0.4756 2.5379 0.4285 3.0798
6 0.5067 2.2962 0.4594 2.7249
7 0.5324 2.1307 0.4853 2.4872
8 0.5542 2.0096 0.5075 2.3163
9 0.5731  1.9168 0.5268 2.1869

10 0.5895 1.8432 0.5438 2.0853
11 0.6041 1.7831 0.5589 2.0032
12 0.6172 1.7330 0.5725 1.9353
13 0.6290 1.6906 0.5848 1.8781
14 0.6397 1.6541 0.5960 1.8291
15 0.6494 1.6223 0.6063 1.7867
20 0.6882   1.5089 0.6475 1.6371
25 0.7160 1.4383 0.6774 1.5452
30 0.7373 1.3893 0.7005 1.4822
35 0.7542 1.3529 0.7190 1.4357
40 0.7682 1.3247 0.7344 1.3997
45 0.7800 1.3020 0.7473 1.3710
50 0.7901 1.2832 0.7585 1.3473
75 0.8252 1.2226 0.7978 1.2714

100 0.8469 1.1885 0.8222 1.2290
500 0.9287 1.0781 0.9161 1.0938

Confidence Interval Equation and "Zero Fails" Case

Formulas
for
confidence
bound
factors -
even for
"zero fails"
case

Confidence bounds for the typical Type I censoring situation are
obtained from chi-square distribution tables or programs. The formula
for calculating confidence intervals is:

In this formula,  is a value that the chi-square statistic with
2r degrees of freedom is greater than with probability 1- /2. In other
words, the right-hand tail of the distribution has probability 1- /2. An
even simpler version of this formula can be written using T = the total
unit test time: 
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These bounds are exact for the case of one or more repairable systems
on test for a fixed time. They are also exact when non repairable units
are on test for a fixed time and failures are replaced with new units
during the course of the test. For other situations, they are approximate. 

When there are zero failures during the test or operation time, only a
(one-sided) MTBF lower bound exists, and this is given by 

MTBFlower = T/(-ln )

The interpretation of this bound is the following: if the true MTBF were
any lower than MTBFlower, we would have seen at least one failure

during T hours of test with probability at least 1- . Therefore, we are
100×(1- )% confident that the true MTBF is not lower than
MTBFlower. 

Dataplot/EXCEL Calculation of Confidence Intervals

Dataplot
and EXCEL
calculation
of
confidence
limits

A lower 100×(1- /2)% confidence bound for the MTBF is given by 

LET LOWER = T*2/CHSPPF( [1- /2], [2*(r+1)])

where T is the total unit or system test time and r is the total number of
failures. 

The upper 100×(1- /2)% confidence bound is 

LET UPPER = T*2/CHSPPF( /2,[2*r])

and (LOWER, UPPER) is a 100× (1- ) confidence interval for the true
MTBF. 

The same calculations can be performed with EXCEL built-in functions
with the commands 

=T*2/CHIINV([ /2], [2*(r+1)]) for the lower bound and
=T*2/CHIINV( [1- /2],[2*r]) for the upper bound.

Note that the Dataplot CHSPPF function requires left tail probability
inputs (i.e., /2 for the lower bound and 1- /2 for the upper bound),
while the EXCEL CHIINV function requires right tail inputs (i.e., 1-

/2 for the lower bound and /2 for the upper bound). 

Example
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Example
showing
how to
calculate
confidence
limits

A system was observed for two calendar months of operation, during
which time it was in operation for 800 hours and had 2 failures. 

The MTBF estimate is 800/2 = 400 hours. A 90% confidence interval is
given by (400×.3177, 400×5.6281) = (127, 2251). The same interval
could have been obtained using the Dataplot commands 

LET LOWER = 1600/CHSPPF(.95,6)
LET UPPER = 1600/CHSPPF(.05,4)

or the EXCEL commands 

=1600/CHIINV(.05,6) for the lower limit
=1600/CHIINV(.95,4) for the upper limit.

Note that 127 is a 95% lower limit for the true MTBF. The customer is
usually only concerned with the lower limit and one-sided lower limits
are often used for statements of contractual requirements.

Zero fails
confidence
limit
calculation

What could we have said if the system had no failures? For a 95% lower
confidence limit on the true MTBF, we either use the 0 failures factor
from the 90% confidence interval table and calculate 800 × .3338 = 267
or we use T/(-ln ) = 800/(-ln.05) = 267. 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.5. How do you fit system repair rate models?

8.4.5.2.Power law (Duane) model

The Power
Law
(Duane)
model has
been very
successful in
modeling
industrial
reliability
improvement
data

Brief Review of Power Law Model and Duane Plots

Recall that the Power Law is a NHPP with the expected number of fails,
M(t), and the repair rate, M'(t) = m(t), given by: 

The parameter  = 1-b is called the Reliability Growth Slope and

typical industry values for growth slopes during reliability improvement
tests are in the .3 to .6 range. 

If a system is observed for a fixed time of T hours and failures occur at
times t1, t2, t3, ..., tr (with the start of the test or observation period
being time 0), a Duane plot is a plot of (ti / i) versus ti on log-log graph
paper. If the data are consistent with a Power Law model, the points in a

Duane Plot will roughly follow a straight line with slope  and
intercept (where t = 1 on the log-log paper) of -log10a.

MLE's for
the Power
Law model
are given

Estimates for the Power Law Model

Computer aided graphical estimates can easily be obtained by doing a
regression fit of Y = ln (ti / i) vs X = ln ti. The slope is the  estimate

and e-intercept is the a estimate. The estimate of b is 1- . The Dataplot
command for the regression fit is FIT Y X. 

However, better estimates can easily be calculated. These are modified
maximum likelihood estimates (corrected to eliminate bias). The
formulas are given below for a fixed time of T hours, and r failures
occurring at times t1, t2, t3, ..., tr. 
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The estimated MTBF at the end of the test (or observation) period is 

Approximate
confidence
bounds for
the MTBF at
end of test
are given

Approximate Confidence Bounds for the MTBF at End of Test

We give an approximate 100×(1- )% confidence interval (ML, MU)

for the MTBF at the end of the test. Note that ML is a 100×(1- /2)%

lower bound and MU is a 100×(1- /2)% upper bound. The formulas
are: 

with  is the upper 100×(1- /2) percentile point of the standard
normal distribution. 
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Dataplot
calculations
for the
Power Law
(Duane)
Model 

Dataplot Estimates And Confidence Bounds For the Power Law
Model 

Dataplot will calculate , a, and the MTBF at the end of test, along
with a 100x(1- )% confidence interval for the true MTBF at the end of
test (assuming, of course, that the Power Law model holds). The user
needs to pull down the Reliability menu and select "Test" and "Power
Law Model". The times of failure can be entered on the Dataplot spread
sheet. A Dataplot example is shown next. 

Case Study 1: Reliability Improvement Test Data Continued

Dataplot
results
fitting the
Power Law
model to
Case Study
1 failure
data

This case study was introduced in section 2, where we did various plots
of the data, including a Duane Plot. The case study was continued when
we discussed trend tests and verified that significant improvement had
taken place. Now we will use Dataplot to complete the case study data
analysis. 

The observed failure times were: 5, 40, 43, 175, 389, 712, 747, 795,
1299 and 1478 hours, with the test ending at 1500 hours. After entering
this information into the "Reliability/Test/Power Law Model" screen
and the Dataplot spreadsheet and selecting a significance level of .2 (for
an 80% confidence level), Dataplot gives the following output:

THE RELIABILITY GROWTH SLOPE BETA IS 0.516495 

THE A PARAMETER IS 0.2913 

THE MTBF AT END OF TEST IS 310.234 

THE DESIRED 80 PERCENT CONFIDENCE INTERVAL IS: 
(157.7139 , 548.5565) 
AND 157.7139 IS A (ONE-SIDED) 90 PERCENT 
LOWER LIMIT 

Note: The downloadable package of statistical programs, SEMSTAT,
will also calculate Power Law model statistics and construct Duane
plots. The routines are reached by selecting "Reliability" from the main
menu then the "Exponential Distribution" and finally "Duane
Analysis". 
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8. Assessing Product Reliability
8.4. Reliability Data Analysis
8.4.5. How do you fit system repair rate models?

8.4.5.3.Exponential law model

Estimates of
the
parameters
of the
Exponential
Law model
can be
obtained
from either
a graphical
procedure
or maximum
likelihood
estimation

Recall from section 1 that the Exponential Law refers to a NHPP

process with repair rate M'(t) = m(t) =  . This model has not been
used nearly as much in industrial applications as the Power Law model,
and it is more difficult to analyze. Only a brief description will be given
here. 

Since the expected number of failures is given by 

M(t) =  and ln M(t) = , a plot of the cum
fails versus time of failure on log-linear paper should roughly follow a

straight line with slope . Doing a regression fit of y = ln cum fails

versus x = time of failure will provide estimates of the slope  and the

intercept - ln . 

Alternatively, maximum likelihood estimates can be obtained from the
following pair of equations: 

The first equation is non-linear and must be solved iteratively to obtain
the maximum likelihood estimate for . Then, this estimate is

substituted into the second equation to solve for the maximum
likelihood estimate for .
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8.4.6.How do you estimate reliability using the
Bayesian gamma prior model?

The Bayesian paradigm was introduced in Section 1 and Section 2 described the assumptions
underlying the gamma/exponential system model (including several methods to transform prior
data and engineering judgment into gamma prior parameters "a" and "b"). Finally, we saw in
Section 3 how to use this Bayesian system model to calculate the required test time needed to
confirm a system MTBF at a given confidence level. 

Review of
Bayesian
procedure
for the
gamma
exponential
system
model

The goal of Bayesian reliability procedures is to obtain as accurate a posterior distribution as
possible, and then use this distribution to calculate failure rate (or MTBF) estimates with
confidence intervals (called credibility intervals by Bayesians). The figure below summarizes
the steps in this process.
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How to
estimate
the MTBF
with
bounds,
based on
the
posterior
distribution

Once the test has been run, and r failures observed, the posterior gamma parameters are: 

a' = a + r, b' = b + T

and a (median) estimate for the MTBF, using EXCEL, is calculated by 

= 1/GAMMAINV(.5, a', (1/ b'))

Some people prefer to use the reciprocal of the mean of the posterior distribution as their estimate

for the MTBF. The mean is the minimum mean square error (MSE) estimator of , but using
the reciprocal of the mean to estimate the MTBF is always more conservative than the "even
money" 50% estimator. 

A lower 80% bound for the MTBF is obtained from 

= 1/GAMMAINV(.8, a', (1/ b'))

and, in general, a lower 100×(1- )% lower bound is given by 

= 1/GAMMAINV((1- ), a', (1/ b')).

A two sided 100× (1- )% credibility interval for the MTBF is 

[{= 1/GAMMAINV((1- /2), a', (1/ b'))},{= 1/GAMMAINV(( /2), a', (1/ b'))}].

Finally, = GAMMADIST((1/M), a', (1/b'), TRUE) calculates the probability the MTBF is greater
than M. 

Example

A Bayesian
example
using
EXCEL to
estimate
the MTBF
and
calculate
upper and
lower
bounds

A system has completed a reliability test aimed at confirming a 600 hour MTBF at an 80%
confidence level. Before the test, a gamma prior with a = 2, b = 1400 was agreed upon, based on
testing at the vendor's location. Bayesian test planning calculations, allowing up to 2 new failures,
called for a test of 1909 hours. When that test was run, there actually were exactly two failures.
What can be said about the system?

The posterior gamma CDF has parameters a' = 4 and b' = 3309. The plot below shows CDF

values on the y-axis, plotted against 1/  = MTBF, on the x-axis. By going from probability, on
the y-axis, across to the curve and down to the MTBF, we can read off any MTBF percentile
point we want. (The EXCEL formulas above will give more accurate MTBF percentile values
than can be read off a graph.)
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The MTBF values are shown below: 

= 1/GAMMAINV(.9, 4, (1/ 3309)) has value 495 hours
= 1/GAMMAINV(.8, 4, (1/ 3309)) has value 600 hours (as expected)
= 1/GAMMAINV(.5, 4, (1/ 3309)) has value 901 hours
= 1/GAMMAINV(.1, 4, (1/ 3309)) has value 1897 hours

The test has confirmed a 600 hour MTBF at 80% confidence, a 495 hour MTBF at 90 %
confidence and (495, 1897) is a 90 percent credibility interval for the MTBF. A single number
(point) estimate for the system MTBF would be 901 hours. Alternatively, you might want to use
the reciprocal of the mean of the posterior distribution (b'/a') = 3309/4 = 827 hours as a single

estimate. The reciprocal mean is more conservative - in this case it is a 57% lower bound, as
=GAMMADIST((4/3309),4,(1/3309),TRUE) shows.
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